Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T14:12:35.785Z Has data issue: false hasContentIssue false

Iron-Doped Apatite Nanoparticles Delivered via Electrospun Fiber Mesh for Maximized Bacterial Killing by Bacteriophage

Published online by Cambridge University Press:  07 June 2017

Jessica M. Andriolo*
Affiliation:
Biomedical Engineering, IIP, University of Montana, Missoula, MT 59812
Gary F. Wyss
Affiliation:
CAMP, Montana Tech, Butte, MT 59701
John P. Murphy
Affiliation:
Materials Science, Montana Tech, Butte, MT 59701
Marisa L. Pedulla
Affiliation:
Biological Sciences, Montana Tech, Butte, MT 59701
M. Katie Hailer
Affiliation:
Chemistry and Geochemistry, Montana Tech, Butte, MT 59701
Jack L. Skinner
Affiliation:
Mechanical Engineering, Montana Tech, Butte, MT 59701
Get access

Abstract

According to the Centers for Disease Control (CDC) and prevention, at least 2 million people in the United States become infected with antibiotic-resistant bacteria, and at least 23,000 people die each year as a direct result of those infections. One alternative to traditional antibiotics is bacteriophage (phage) therapy. Phage therapy utilizes bacteria-specific viruses to infect and kill bacteria cells. The specificity of these viruses is beneficial in that phage used for therapeutic purposes do not harm the human microbiota, nor do phage infect eukaryotic cells. It has been discovered that iron-doped apatite nanoparticles (IDANPs) significantly enhance phage killing of bacteria cells. The biocompatibility of apatite, coupled with its effectiveness as an adjuvant to enhance an alternative antibiotic therapy, makes it of interest for medical applications. Previously, researchers have encased phage in a microfluidic channel in coaxially electrospun fibers, allowing phage to remain viable after several weeks storage at 4 °C. Here, we have constructed a polymer fiber layer using electrospinning (ES) for delivery of IDANP adjuvants to compliment phage treatment delivery fibers. The IDANP delivery layer constructed is composed of polyethylene oxide (PEO) doped with the nanoparticles. When compared to media-only and IDANP-only controls, results show IDANPs delivered through a PEO fiber mesh remain effective at enhancement of phage infectivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, (2013).Google Scholar
Chatterjee, S. and Rothenberg, E., Viruses 4, 3162 (2012).Google Scholar
Young, R., Microbiol. Rev. 56, 430 (1992).Google Scholar
Fenton, M., Ross, P., McAuliffe, O., O’Mahony, J., and Coffey, A., Bioeng. Bugs 1, 9 (2010).Google Scholar
d’Herelle, F., B. New York Acad. Med. 7, 329 (1931).Google Scholar
Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., and Qadri, I., Virol. J. 9, (2012).Google Scholar
Chhibber, S., Kaur, T., and Kaur, S., PloS One 8, (2013).Google Scholar
Mendes, J. J., Leandro, C., Corte-Real, S., Barbosa, R., Cavaco-Silva, P., Melo-Cristino, J., Gorski, A., and Garcia, M., Wound Repair Regener. 21, 595 (2013).Google Scholar
Lungren, M. P., Christensen, D., Kankotia, R., Falk, I., Paxton, B. E., and Kim, C. Y., Bacteriophage 3, (2013).Google Scholar
Yilmaz, C., Colak, M., Yilmaz, B. C., Ersoz, G., Kutateladze, M., and Gozlugol, M., J. Bone Jt. 95, 117 (2013).Google Scholar
Miᶒdzybrodzki, R., Fortuna, W., Weber-Dᶏbrowska, B., and Górski, A., Postepy. Hig. Med. Dosw. 61, 461 (2007).Google Scholar
Parasion, S., Kwiatek, M., Gryko, R., Mizak, L., Malm, A., Pol. J. Microbiol. 63, 137 (2014).Google Scholar
Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N., Viruses 9, (2017).CrossRefGoogle Scholar
Andriolo, J.M., Hensleigh, R.M., McConnell, C.A., Pedulla, M., Hailer, K., Kasinath, R., Wyss, G., Gleason, W., and Skinner, J.L., J. Vac. Sci. Technol. B 32 (2014).Google Scholar
Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D., and Stupp, S. I., Chem. Rev. 108, 4754 (2008).Google Scholar
Šupová, M, Ceram. Int. 41, 9203 (2015).CrossRefGoogle Scholar
Prem, V. S. and Chandra, S., J. Biomater Tissue Eng. 2, 269 (2012).Google Scholar
Sahdev, P., Podaralla, S., Kaushik, R. S., and Perumal, O., J. Biomed. Nanotechnol. 9, 132 (2013).CrossRefGoogle Scholar
Lee, D., Upadhye, K., and Kumta, P.N., Mater. Sci. Eng. B 177, 269 (2012).Google Scholar
Keshri, A. K. and Agarwal, A., Nanosci. Nanotechnol. Let. 4, 228 (2012).Google Scholar
Ezhaveni, S., Yuvakkumar, R., Rajkumar, M., Sundaram, N. M., and Rajendran, V., J. Nanosci. Nanotechnol. 13, 1631 (2013).Google Scholar
Xu, H., Cao, B., George, A., and Mao, C. B., Biomacromolecules 12, 2193 (2011).Google Scholar
He, T., Abbineni, G., Cao, B., and Mao, C. B., Small 6, 2230, (2010).Google Scholar
Andriolo, J. M., Rossi, R. J., McConnell, C. A., Connors, B. I., Trout, K. L., Hailer, M. K., and Skinner, J. L., J. Vac. Sci. Technol. 15, 908 (2016).Google Scholar
Korehei, R. and Kadla, J., J. Appl. Microbiol. 114, 1425 (2013).CrossRefGoogle Scholar
Korehei, R. and Kadla, J. F., Carbohyd. Polym. 100, 150 (2014).Google Scholar
Beisel, J. D., Murphy, J. P., Andriolo, J. M., Kooistra-Manning, E. A., Nicolaysen, S., Boese, O., Fleming, J., Nakagawa, W., and Skinner, J. L., J. Vac. Sci. Technol. B 34, (2016).CrossRefGoogle Scholar