Published online by Cambridge University Press: 15 February 2017
The present paper investigates the use of electric current treatment in improving the drawability of plain carbon steel wire for high strength steel applications. The mechanical properties for wires of composition 0.80C 0.65Mn 0.27Si wt.% of diameters 4.09 and 3.00 mm dry drawn from 10.00 mm rods are characterised. The total number of passes for 4.09 and 3.00 mm diameter wires are 7 and 10 respectively resulting in true strains of 1.79 and 2.41. Samples are treated with electric currents in-between the two drawing stages of 4.09 and 3.00 mm, and tested at both stages in tension, torsion and reverse bending along with control samples for comparison. The applied currents are pulsed at a frequency of 100 Hz with each pulse being approximated by a square wave of loading width 80μs and modest current densities of 7.96 Amm–2. Thus the influence of electric current on the drawability of plain carbon steel wire is assessed between stages of reduction.