Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T21:39:39.716Z Has data issue: false hasContentIssue false

Metal-Organic chemical vapor deposition of BN on sapphire and its heterostructures with 2D and 3D materials

Published online by Cambridge University Press:  21 July 2016

Qing Paduano*
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA
Michael Snure
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA
Get access

Abstract

We studied MOCVD processing for direct growth of BN on 2” sapphire substrates as a template for heterostructures with two dimensional (2D) and three dimensional (3D) materials. The combined experimental evidence points to three growth modes for BN: self-terminating, 3D random, and layer-by-layer, all of which are dependent on V/III ratio, temperature, pressure, and substrate surface modification via nitridation. At moderate temperature (950-1050°C), BN growth using high V/III ratio is self-terminating, resulting in c-oriented films aligned in-plane with respect to the orientation of the sapphire substrate. BN films grown under low V/III ratios are 3D, randomly oriented, and nano-crystalline. At higher temperature (1100°C), self-terminating growth transitions to a continuous layer-by-layer growth mode. When BN growth is self-terminating, films exhibit atomically smooth surface morphology and highly uniform thickness over a 2” sapphire wafer. Using these BN/sapphire templates we studied the growth of 2D and 2D/3D heterostructures. To study direct growth of 2D on 2D layered material we deposited graphene on BN in a continued process within the same MOCVD system. Furthermore, we explore the growth and nucleation of 3D materials (GaN and AlN) on BN. AlGaN/GaN based high electron mobility transistor (HEMT) structures grown on BN/sapphire exhibited two-dimensional electron gas characteristics at the AlGaN/GaN heterointerface, with room-temperature electron mobility and sheet electron density about 1900cm2/Vs and 1x1013cm-2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakamura, T., J. Electrochem. Soc. 133, 1120 (1986).CrossRefGoogle Scholar
Cubarovs, M., Pedersen, H., Högberg, H., Darakchieva, V., Jens, J., Persson, P., Henry, A., Physica Status Solidi. Rapid Research Letters, (5), 10-11, 397 (2011).Google Scholar
Kobayashi, Y., Akasaka, T., J. Crystal Growth, 310 5044 (2008).CrossRefGoogle Scholar
Paduano, Q. S. and Snure, M., Appl. Phys. Exp. 7, 071004, (2014).CrossRefGoogle Scholar
Chen, J. H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M. S., Nature Nanotech. 3, 206 (2008).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., Hone, J., Nat. Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Tang, S., Ding, G., Xie, X., Chen, J., Wang, C., Ding, X., Huang, F., Lu, W., Jiang, M., Carbon 50, 321 (2012).Google Scholar
Yang, W., Chen, G. R., Shi, Z. W., Liu, C. C., Zhang, L. C., Xie, G. B., Cheng, M., Wang, D. M., Yang, R., Shi, D. X., Watanabe, K., Taniguchi, T., Yao, Y. G., Zhang, Y. B., Zhang, G. Y., Nat. Mater. 12, 792 (2013).CrossRefGoogle Scholar
Tang, S., Wang, H., Wang, H. S., Sun, Q., Zhang, X., Cong, C., Xie, H., Liu, X., Zhou, X., Huang, F., Chen, X., Yu, T., Ding, F., Xie, X., Jiang, M., Nat. Commun. 6, 6499 (2015).CrossRefGoogle Scholar
Wang, M., Jang, S. K., Jang, W. J., Kim, M., Park, S. Y., Kim, S. W., Kahng, S. J., Choi, J. Y., Ruoff, R. S., Song, Y. J., Lee, S., Adv. Mater. 25, 2746 (2013).CrossRefGoogle Scholar
Zhang, L., Li, X., Shao, Y., Yu, J., Wu, Y., Hao, X., Yin, Z., Dai, Y., Tian, Y., Huo, Q., Shen, Y., Hua, Z., Zhang, B., ACS Appl. Mater. Interfaces 7, 4504(2015).CrossRefGoogle Scholar
Kobayashi, Y., Kumakura, K., Akasaka, T., Makimoto, T., Nature 484, 223 (2012).CrossRefGoogle Scholar
Felbinger, J. G., Chandra, M. V. S., Sun, Y, Eastman, L. F., Wasserbauer, J., Faili, F., Babic, D., Francis, D., and Ejeckam, F., IEEE Electron Device Lett. 28, 948 (2007)CrossRefGoogle Scholar
Nepal, N., Wheeler, V. D., Anderson, T. J., Kub, F. J., Mastro, M. A., Myers-Ward, R. L., Qadri, S. B., Freitas, J. A., Hernandez, S. C., Nyakiti, L. O., Walton, S. G., Gaskill, K., and Eddy, C. R. Jr., Appl. Phys. Exp. 6, 061003 (2013).CrossRefGoogle Scholar
Snure, M., Paduano, Q. and Kiefer, A., J. Crystal Growth, 436, 16 (2016).CrossRefGoogle Scholar
Paduano, Q. S., Snure, M. and Shoaf, J., in MRS Proceeding Vol. 1726, (2015).CrossRefGoogle Scholar
Geick, R., Perry, C. H., Rupprecht, G., Phys. Rev. 146, 543 (1966).CrossRefGoogle Scholar
Nemanich, R. J., Solin, S. A., Martin, R. M., Phys. Rev. B 23, (1981) 6348. 18)Google Scholar
Snure, M., Paduano, Q., Hamilton, M., Shoaf, J. and Matthew Mann, J., Thin Solid Films 517, 51 (2014).CrossRefGoogle Scholar
Rozenberg, A. S., Sinenko, Y. A., Chukanov, N. V., J. Mat. Sci. 28, (1993) 5675.CrossRefGoogle Scholar
Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresca, H, C., Covacevich, A., Pope, C., Piner, R., Kim, M. J., Wallace, R. M., Colombo, L., and Ruoff, R. S., ACS Nano, 6 (7), 6378 (2012).CrossRefGoogle Scholar
Tay, R. Y., Griep, M. H., Mallick, G., Tsang, S. H., Singh, R. S., Tumlin, T., Teo, E. H. T., Karna, S. P., Nano Lett. 14, 839 (2014).CrossRefGoogle Scholar
Hashimoto, T., Terakoshi, Y., Ishida, M., Yuri, M., Imafuji, O., Sugino, T., Yoshikawa, A., and Itoh, K., J. Cryst. Growth 189-190, 254 (1998).CrossRefGoogle Scholar
Kobayashi, Y., Tsai, C. L. and Akasaka, T., Phys. Status Solidi C, 7, 1906 (2010).CrossRefGoogle Scholar
Chubarov, M., Pedersen, H., Ho¨gberg, H., Darakchieva, V., Jensen, J., Persson, P. O. Å. and Henry, A., Phys. Status Solidi RRL, 2011, 5, 397.CrossRefGoogle Scholar
Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., and Minagawa, S., J. Appl. Phys. 79, 3487 (1996).CrossRefGoogle Scholar
Paduano, Q. S., Snure, M., Weyburne, D. W., and Kiefer, A., Submitted to J. Crystal Growth, (2016).Google Scholar
Snure, M. and Paduano, Q. MRS Proceedings 1781, 1 (2015).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
Cancado, L. G., Jorio, A., Pimenta, M. A., Phys Rev B 76, 064304 (2007).CrossRefGoogle Scholar
Hiroki, M., Kumakura, K., Kobayashi, Y., Akasaka, T., Makimoto, T., Yamamoto, H., Appl. Phys. Lett. 105, 193509 (2014).CrossRefGoogle Scholar