Published online by Cambridge University Press: 02 January 2019
In this study, the microstructural characterization of a superplastic Zn-Al-Ag alloy (72, 24, and 4 in % wt. respectively) by using spectroscopy analysis techniques was obtained. The X-Ray Fluorescence (XRF), Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) techniques were used. The main objective of this alloy development is to improve its super-plasticity property and increases its corrosion resistance in acid rain environments. The effect of small grain microstructure of the alloy obtained at the end of the fabrication process improved the super-plasticity behavior. The result of the fabrication process was observed by the characterization of crystallographic phases (morphology, size and distribution) and the chemical composition. The obtained results by XRF shown that Zn was the higher proportion element, in addition the Ag (4% wt.) addition to Zn-Al base alloy improves the grain refinement, as was observed by the SEM characterization. The Ag3Al and AgZn3 intermetallic compounds homogeneously dispersed were observed in the microstructure of the Zn-Al solid solution phase. The size grain observed after the rolling process was less than 10 µm, and it was associated to one of the main characteristics of super-plasticity properties. The XRD analysis results corroborated the present phases in the alloy, as was identified with the SEM and EDS characterization.