Published online by Cambridge University Press: 02 January 2019
We have demonstrated the high yield (∼900 μm) and highly single-wall selective (>95%) growth of carbon nanotube (CNT) forest using aluminium nitride (AlN) as a catalyst underlayer. Such high efficiency and single-wall selectivity have not been previously reported using this underlayer system. Evaluation with transmission electron microscopy showed that the average diameter of the grown carbon nanotubes was ∼3.0 nm, which is similar to those grown on alumina underlayers. In addition, characterization of the catalyst/underlayer system using atomic force microscopy and X-ray photoelectron spectroscopy suggests that neither Ostwald ripening along the surface nor catalyst subsurface diffusion into the AlN underlayer are severely occurring at the growth temperature, leading to the creation of the stable and dense small nanoparticle array to achieve an efficient growth of single-wall CNTs.