Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T13:14:01.520Z Has data issue: false hasContentIssue false

Multi-step sintering processing of ferrites having enhanced magnetic properties

Published online by Cambridge University Press:  22 January 2019

Ning Jia*
Affiliation:
University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Huaiwu Zhang
Affiliation:
University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Vincent G. Harris
Affiliation:
Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, MA02115USA
Get access

Abstract

Traditional synthesis of high-performance bulk ferrites include complex sintering procedures where temperature and soak times to obtain high densities and excellent magnetic properties. Most ferrites must be sintered at hundreds degree centigrade approaching or surpassing 1000oC, and for YIG (yttrium iron garnet), the sintering temperature should be approximately 1450°C. The high sintering temperatures limit the applications of ferrites, for example, the low temperature co-sintering of ceramics with silver electrodes and/or ground planes. For decades, researchers have explored the use of ion-doping, sintering aids, and microstructural refinement. Here, we study the optimization of the sintering profile including multiples temperature and soak times for doped Bi-YIG simples. The results show an improvement in soft magnetic and gyromagnetic properties attributed to the homogenization of grain size and morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Harris, VG. Modern Microwave Ferrites. IEEE Trans Magn. 2012;48(3):1075-1104.CrossRefGoogle Scholar
Liu, H, Wu, J, Zhuang, Q, Dang, A, Li, T, Zhao, T. Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J Eur Ceram Soc. 2016;36(16):3939-3946.CrossRefGoogle Scholar
Imanaka, Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer; 2005.Google Scholar
Sebastian, MT, Jantunen, H. Low loss dielectric materials for LTCC applications: a review. Int Mater Rev. 2008;53(2):57-90.CrossRefGoogle Scholar
Gongora-Rubio, MR, Espinoza-Vallejos, P, Sola-Laguna, L, Santiago-Aviles, JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuator A-Phys. 2001;89(3):222-241.CrossRefGoogle Scholar
Dernovsek, O, Naeini, A, Preu, G, Wersing, W, Eberstein, M, Schiller, WA. LTCC glass-ceramic composites for microwave application. J Eur Ceram Soc. 2001;21(10-11):1693-1697.CrossRefGoogle Scholar
Serga, AA, Chumak, AV, Hillebrands, B. YIG magnonics. J Phys D-Appl Phys. 2010;43(26):16.CrossRefGoogle Scholar
Shastry, S, Srinivasan, G, Bichurin, MI, Petrov, VM, Tatarenko, AS. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Physical Review B. 2004;70(6):6.CrossRefGoogle Scholar
Sun, YY, Song, YY, Chang, HC, Kabatek, M, Jantz, M, Schneider, W, et al. Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films. Appl Phys Lett. 2012;101(15):5.Google Scholar
Krawczyk, M, Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J Phys-Condes Matter. 2014;26(12):32.CrossRefGoogle ScholarPubMed
Fetisov, YK, Srinivasan, G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett. 2006;88(14):3.CrossRefGoogle Scholar
Bichurin, MI, Petrov, VM, Kiliba, YV, Srinivasan, G. Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Physical Review B. 2002;66(13):10.CrossRefGoogle Scholar
Olmsted, DL, Foiles, SM, Holm, EA. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Materialia. 2009;57(13):3694-3703.CrossRefGoogle Scholar
Olmsted, DL, Holm, EA, Foiles, SM. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Materialia. 2009;57(13):3704-3713.CrossRefGoogle Scholar
Sutton, AP, Balluffi, RW. Interfaces in crystalline materials. OxfordNew York: Clarendon Press ;Oxford University Press; 1995Google Scholar
Holm, EA, Foiles, SM. How Grain Growth Stops: A Mechanism for Grain-Growth Stagnation in Pure Materials. Science. 2010;328(5982):1138-1141.CrossRefGoogle ScholarPubMed