No CrossRef data available.
Published online by Cambridge University Press: 05 February 2016
Cellulose nanocrystals (CNCs) are high-strength sustainable nanomaterials, theincorporation of which to a host polymer matrix can potentially lead tonanocomposites with superior mechanical properties. However, the mismatch insurface energy of CNCs and common structural polymers is a challenge that needsto be overcome to prevent the aggregation of CNCs and ensure the robustintegration of CNCs into a polymer matrix. Herein, we report an approachinvolving the functionalization of CNCs with maleated-anhydride polypropylene(MAPP) through diethylenetriamine (DETA) linkers to significantly enhance thecompatibility between CNCs and polypropylene. Polypropylene/modified CNCnanocomposites displayed 74% and 76% increase in elastic modulus in comparisonto neat polypropylene and polypropylene/untreated CNC nanocomposites,respectively. The tensile strength was also higher for nanocomposites withmodified CNC than neat polypropylene, as well as nanocomposites with untreatedCNCs. The tensile strength at 5.5% strain of polypropylene/modified CNCnanocomposites was 32% and 28% larger that of polypropylene andpolypropylene/untreated CNC nanocomposites, respectively. Finally, suchCNC-based nanocomposites have a lower density than many competitive systemsresulting in opportunities to propagate this environmentally-responsibletechnology to nanocomposites used in additive manufacturing, automotiveapplications, construction materials and consumer products.