Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:59:36.060Z Has data issue: false hasContentIssue false

New Methods for the Fabrication of Composites for Supercapacitor Electrodes with High Active Mass Loading

Published online by Cambridge University Press:  23 April 2018

Aseeb M. Syed
Affiliation:
Department of Materials Science and Engineering, McMaster University
Igor Zhitomirsky*
Affiliation:
Department of Materials Science and Engineering, McMaster University
*
Get access

Abstract

MnO2-multiwalled carbon nanotube (MWCNT) supercapacitor electrodes with active mass loading of 30-45 mg cm-2 were prepared. In method 1, MnO2 and MWCNT were dispersed using 3,4-dihydroxybenzaldehyde (DHB) and toluidine blue (TD), respectively. The Schiff base formation between amino group of TD and aldehyde group of DHB facilitated improved mixing of MnO2 and MWCNT. In method 2, gallocyanine (GC) was used as a co-dispersant for MnO2 and MWCNT. The catecholate type bonding of DHB and GC allowed for adsorption of the dispersant molecules on MnO2 nanoparticles. The electrodes, prepared by method 1 showed higher capacitance, compared to the electrode, prepared by method 2. The highest capacitance of 7.8 F cm-2 (173 F g-1, 139 F cm-3) was obtained at a scan rate of 2 mV s-1 and active mass loading of 45 mg cm-2.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brousse, T., Taberna, P.L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y, Zhou, Y, Favier, F., Belanger, D., and Simon, P., J. Power Sources, 173, 633 (2007)CrossRefGoogle Scholar
Grote, F., .Kuhnel, R.S., Balducci, A., and Lei, Y., Appl. Phys. Lett., 104, 053904 (2014).CrossRefGoogle Scholar
Devaraj, S. and Munichandraiah, N., Electrochem. Solid-State Lett., 8, A373 (2005).CrossRefGoogle Scholar
Khomenko, V., Raymundo-Pinero, E., and Beguin, F., J. Power Sources, 153, 183 (2006).CrossRefGoogle Scholar
Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
Pang, S. C., Anderson, M.A., Chapman, T.W., J.Electrochem. Soc. 147, 444 (2000)CrossRefGoogle Scholar
Broughton, J., Brett, M., Electrochim. Acta 49, 4439 (2004)CrossRefGoogle Scholar
Cheong, M, Zhitomirsky, I, Surf. Eng. 25, 346 (2009)CrossRefGoogle Scholar
Augustyn, V., Simon, P., and Dunn, B., Energy Environ. Sci., 7, 1597 (2014)CrossRefGoogle Scholar
Balducci, A., J. Power Sources 326, 534 (2016)CrossRefGoogle Scholar
Gogotsi, Y., Simon, P., Science 334, 917 (2011).CrossRefGoogle ScholarPubMed
Shi, K, Zhitomirsky, I, J.Power Sources, 240, 42 ( 2013)CrossRefGoogle Scholar
Ata, M.S, Poon, R, Syed, A.M, Milne, J and Zhitomirsky, I, Carbon, 130, 584 (2018)CrossRefGoogle Scholar
Ata, M.S, Liu, Y, Zhitomirsky, I, RSC Adv. 4, 22716 (2014)CrossRefGoogle Scholar
Yu, Y, Wang, Q, Yuan, J, Fan, X, Wang, P and Cui, L, Carbohydrate Polymers 137, 549 (2016)CrossRefGoogle Scholar
Clifford, A, Pang, X and Zhitomirsky, I, Colloids Surfaces A, 544, 28 (2018)CrossRefGoogle Scholar
Ren, X., Pickup, P.G., J. Electroanal. Chem. 372, 289 (1994)CrossRefGoogle Scholar
Tanguy, J., Mermilliod, N., Hoclet, M., Electrochem, J.. Soc. 134, 795 (1987).Google Scholar
Feldman, B.J., Burgmayer, P., Murray, R.W., Am, J.. Chem. Soc. 107, 872 (1985).CrossRefGoogle Scholar
Wang, Y, Liu, Y and Zhitomirsky, I, J. Mater. Chem.A, 1, 12519 (2013).CrossRefGoogle Scholar
Milne, J and Zhitomirsky, I, J.Colloid. Interface Sci., 515, 50 (2018)CrossRefGoogle Scholar