Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T13:13:42.275Z Has data issue: false hasContentIssue false

Optoelectronic properties of graphene quantum dots with molybdenum disulfide

Published online by Cambridge University Press:  28 January 2019

Misook Min
Affiliation:
Department of Materials Science and Engineering, PACCAR Technology Institute, University of North Texas, Denton, TX76207, USA
Gustavo A. Saenz
Affiliation:
Department of Materials Science and Engineering, PACCAR Technology Institute, University of North Texas, Denton, TX76207, USA Department of Electrical Engineering, University of North Texas, Denton, TX76207, USA
Anupama B. Kaul*
Affiliation:
Department of Materials Science and Engineering, PACCAR Technology Institute, University of North Texas, Denton, TX76207, USA Department of Electrical Engineering, University of North Texas, Denton, TX76207, USA
*
*Corresponding Author Email: Anupama.kaul@unt.edu
Get access

Abstract

The presence of a direct optical bandgap in the transition metal dichalcogenide (TMD) layers leads to promising applications in optoelectronic devices such as phototransistors and photodetectors. These devices are commonly fabricated using few-layer and monolayer MoS2 sheets obtained using mechanical exfoliation or chemical vapor deposition techniques. The hybrid structure of quantum dots (QDs) and 2D materials has been investigated to provide outstanding properties for various applications. Herein we report the fabrication of a hybrid QDs/MoS2 photodetector consisting of graphene quantum dots (GQDs) and multilayer MoS2 sheets. The hybrid GQDs and MoS2 films are characterized by atomic force microscopy (AFM); additionally, the I-V characteristics are measured by two-point probe station.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H., Nat. Chem. 5, 263 (2013).10.1038/nchem.1589CrossRefGoogle Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S., Nat. Nanotechnol. 7, 699 (2013).10.1038/nnano.2012.193CrossRefGoogle Scholar
Pak, J., Min, M., Cho, K., Lien, D. -H., Ahn, G. H., Jang, J., Yoo, D., Chung, S., Javey, A., Lee, T., Appl, Phys. Lett. 109, 183502 (2016).10.1063/1.4966668CrossRefGoogle Scholar
Cho, K., Min, M., Kim, T. -Y., Jeong, H., Pak, J., Kim, J. -K., Jang, J., Yun, S. J., Lee, Y. H., Hong, W. -K., Lee, T., ACS Nano. 9, 8044 (2015).10.1021/acsnano.5b04400CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Late, D. J., Huang, Y. -K., Liu, B., Acharya, J., Shirodkar, S. N, Luo, J., Yan, A., Charles, D., Waghmare, U. V., Dravid, V. P., Rao, C. N. R., ACS Nano, 7, 4879 (2013).10.1021/nn400026uCrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).10.1103/PhysRevLett.105.136805CrossRefGoogle Scholar
Xiang, Q., Yu, J., Jaroniec, M., J. Am. Chem. Soc. 134, 6575 (2012).10.1021/ja302846nCrossRefGoogle Scholar
Wang, X., Wang, P., Wang, J., Hu, W., Zhou, X., Guo, N., Huang, H., Sun, S., Shen, H., Lin, T., Tang, M., Liao, L., Jiang, A., Sun, J., Meng, X., Chen, X., Lu, W., Chu, J., Adv. Mater. 27, 6575 (2015).CrossRefGoogle Scholar
Wu, J. -Y., Chun, Y. T., Li, S., Zhang, T., Wang, J., Shrestha, P. K., Chu, D., Adv. Mater. 30, 1705880 (2018).10.1002/adma.201705880CrossRefGoogle Scholar
Pak, J., Jang, J., Cho, K., Kim, T. -Y., Kim, J. -K., Song, Y., Hong, W. -K., Min, M., Lee, H., Lee, T., Nanoscale. 7, 18780 (2015)10.1039/C5NR04836BCrossRefGoogle Scholar
Hossain, R. F., Deaguero, I. G., Boland, T., Kaul, A. B., npj 2D Materials and Applicatons. 1, 28 (2017)CrossRefGoogle Scholar
Radisavljevic, B., Kis, A., Nat. Mater. 12, 815 (2013).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., Nat. Nanotechnol. 8, 497 (2013).10.1038/nnano.2013.100CrossRefGoogle Scholar
Li, J., Wang, Z., Wen, Y., Chu, J., Yin, L., Cheng, R., Lei, L., He, P., Jiang, C., Feng, L., He, J., Adv. Funct. Mater. 28, 1706437 (2018)10.1002/adfm.201706437CrossRefGoogle Scholar
Kufer, D., Nikitsky, I., Lasanta, T., Navickaite, G., Koppens, F. H. L., Konstantatos, G., Adv. Mater. 27, 176 (2015)CrossRefGoogle Scholar
Ye, R., Xiang, C., Lin, J., Peng, Z., Huang, K., Yan, Z., Cook, N. P., Samuel, E. L. G., Hwang, C. -C., Ruan, G., Ceriotti, G., Raji, A. -R. O., Marti, A. A., Tour, J. M., Nat. Commun. 4, 2943 (2013).CrossRefGoogle Scholar