Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T06:16:43.627Z Has data issue: false hasContentIssue false

Photomagnetic behavior and infrared spectroscopy of rare-earth doped La0.7Sr0.3MnO3

Published online by Cambridge University Press:  31 January 2019

Ricardo Martínez*
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, USA
Hannu Huhtinen
Affiliation:
Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku FIN-20014, Finland
Wojciech Jadwisienczak
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Stocker Center, Athens, 45701, USA
Ratnakar Palai
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, 00931, USA
Get access

Abstract

We report on photo-induced magnetic effect and infrared (IR) spectroscopic behavior of colossal magnetorestive manganite La0.7Sr0.3MnO3 (LSMO) with rare earth co-doping (Er3+ and Yb3) at room temperature. X-ray diffraction shows that a structural phase transformation from rhombohedral to hexagonal with increasing Er and Yb concentrations. Photo-induced magnetoresistance showed that Er3+ and Yb+3 ions have significant influence on the magnetic and electrical ordering of LSMO under the influence of UV light. The optical excitation also shows an enhancement in the magnetotransport properties of LSMO.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rao, C.N.R. and Raveau, B. in Colossal Magneto Resistance, Charge Ordering and Related Properties of Manganese Oxides (World Scientific, Singapore 1998) pp. 1-325.CrossRefGoogle Scholar
Dagotto, E., Hotta, T. and Moreo, A., Phys. Rep. 344 1153 (2001).CrossRefGoogle Scholar
Huhtinen, H., Laiho, R., Lahderanta, E., Vlasenko, L.S., Vlasenko, M.P. and Zakhvalinskii, V.S., Phys. Rev. B. 62, 11614 (2000).CrossRefGoogle Scholar
Baran, M., Gnatchenko, S.L., Gorbenko, O. Yu., Kaul, A.R., Szymczak, R. and Szymczak, H., Phys. Rev. B. 60, 9244 (1999).CrossRefGoogle Scholar
Rini, M., Tobey, R., Dean, N., Itatani, J., Tomioka, Y., Tokura, Y., Schoenlein, R. W. and Cavalleri, A., Nature, 449, 72-74 (2007).CrossRefGoogle Scholar
Subedi, A., Cavalleri, A. and Georges, A., Phys. Rev B, 89, 220301 (2014).CrossRefGoogle Scholar
Dasari, K, Wu, J, Huhtinen, H, Jadwisienczak, WM and Palai, R, J. Phys. D: Appl. Phys, 50, 175104 (2017).CrossRefGoogle Scholar
Dasari, K., Wang, J., Guinel, M. J.-F., Jadwisienczak, W. M., Huhtinen, H., Mundle, R., Pradhan, A. K., and Palai, R., J. Appl. Phys., 118, 125707 (2015).CrossRefGoogle Scholar
Millis, A. J., Darling, T. and Migliori, A., J. Appl. Phys, 83, 1588 (1998).CrossRefGoogle Scholar
Zhou, J. P., McDevitt, J. T., Zhou, J. S., Yin, H. Q., and Goodenough, J. B., Appl. Phys. Lett. 75, 1146 (1999).CrossRefGoogle Scholar
Vailionis, A., Boschker, H., Siemons, W., Houwman, E. P., Blank, D. H. A., Rijnders, G., and Koster, G., Phys. Rev. B 83, 064101, (2011).CrossRefGoogle Scholar