Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:19:00.994Z Has data issue: false hasContentIssue false

Photovoltaic cells based on the use of natural pigments: Phycoerythrin from red-antarctic algae as sensitizers for DSSC

Published online by Cambridge University Press:  24 July 2018

Paula Enciso
Affiliation:
Laboratorio de Biomateriales, Facultad de Ciencias, Universidad de la República. Igua 4225, 11400 Montevideo, Uruguay
Michael Woerner
Affiliation:
Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany
María Fernanda Cerdá*
Affiliation:
Laboratorio de Biomateriales, Facultad de Ciencias, Universidad de la República. Igua 4225, 11400 Montevideo, Uruguay
*
Get access

Abstract

DSSC assembled with purified R-phycoerythrin show acceptable efficiency conversion values, especially when extracted from Palmaria decipiens. They showed up to 0.12 % conversion efficiency values. Adsorption of the protein onto the electrode surface plays a relevant role in DSSC performance impacting on the performance. The use of dyes easily obtained in a place as Antarctica is an alternative to explore to solve the energy issue.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O´Regan, B. et al. , A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353: p. 737740.CrossRefGoogle Scholar
Yella, A. et al. , Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334(6056): p. 629634.CrossRefGoogle ScholarPubMed
Bisquert, J. et al. , Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. J. Phys. Chem.B, 2004. 108: p. 81068118.CrossRefGoogle Scholar
Gao, F. et al. , Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc., 2008. 130: p. 1072010728.CrossRefGoogle ScholarPubMed
Grätzel, C. et al. , Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. Mat. Today, 2013. 16(1): p. 1118.CrossRefGoogle Scholar
Nazeeruddin, M.K. et al. , Dye-sensitized solar cells: A brief overview. Sol. Energy, 2011. 85(6): p. 11721178.CrossRefGoogle Scholar
Calogero, G. et al. , Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol. Energy, 2012. 86: p. 15631575.CrossRefGoogle Scholar
Shalini, S. et al. , Review on natural dye sensitized solar cells: Operation, materials and methods. Renew. Sust. Energy Rev., 2015. 51: p. 13061325.CrossRefGoogle Scholar
Enciso, P. et al. , Influence of the adsorption of phycocyanin on the performance in DSS cells: and electrochemical and QCM evaluation. Int. J. Electrochem. Sci., 2016. 11, p. 36043614.CrossRefGoogle Scholar
Enciso, P. et al. , Solar cells based on the use of photosensitizers obtained from Antarctic red algae. Cold Reg. Sci. Technol., 2016. 126, p. 5154.CrossRefGoogle Scholar
De Bon, M. et al. , Caracterización de pigmentos extraídos de algas rojas de la Antártida para su posible uso en celdas solares del tipo DSSC. INNOTEC, 2017. 13: p. 4449.Google Scholar
Ficner, R. et al. , Refined crystal structure of phycoerythrin from Porphyridiumcruentum at 0.23-nm resolution and localization of the subunit. Eur. J. Biochem., 1993. 218: p. 103106.CrossRefGoogle ScholarPubMed
Isailovic, D. et al. , Isolation and characterization of R-phycoerythrin subunits and enzymatic digests. J. Chromat. A, 2004. 1051: p. 119130.CrossRefGoogle ScholarPubMed
Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B, 2002. 106: p. 325333.CrossRefGoogle Scholar