Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:43:30.320Z Has data issue: false hasContentIssue false

Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies

Published online by Cambridge University Press:  20 February 2018

C. Ribeiro
Affiliation:
Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-058Braga, Portugal CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057Braga, Portugal
D.M. Correia
Affiliation:
Department of chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801Vila Real, Portugal BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160Derio, Spain
S. Ribeiro
Affiliation:
Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-058Braga, Portugal Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057Braga, Portugal
M. M. Fernandes
Affiliation:
Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-058Braga, Portugal CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057Braga, Portugal
S. Lanceros-Mendez*
Affiliation:
BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160Derio, Spain IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
*
*corresponding author: senentxu.lanceros@bcmaterials.net
Get access

Abstract

Tissue engineering and regenerative medicine are increasingly taking advantage of active materials, allowing to provide specific clues to the cells. In particular, the use of electroactive polymers that deliver an electrical signal to the cells upon mechanical solicitation, open new scientific and technological opportunities, as they in fact mimic signals and effects that occur in living tissues, allowing the development of suitable microenvironments for tissue regeneration. Thus, a novel overall strategy for bone and muscle tissue engineering was developed based on the fact that these cells type are subjected to mechano-electrical stimuli in their in vivo microenvironment and that piezo- and magnetoelectric polymers, used as scaffolds, are suitable for delivering those cues. The processing and functional characterizations of piezoelectric and magnetoelectric polymers based on poly(vinylindene fluoride) and poly-L-lactic acid in a variety of shapes, from microspheres to electrospun mats and three dimensional scaffolds, are shown as well as their performance in the development of novel bone and muscle tissue engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Ribeiro, C., Sencadas, V., Correia, D. M. and Lanceros-Méndez, S., Colloids Surf B 136, 4655 (2015).CrossRefGoogle Scholar
Mehta, M., Schmidt-Bleek, K., Duda, G. N. and Mooney, D. J., Adv Drug Deliv Rev 64 (12), 12571276 (2012).CrossRefGoogle Scholar
Martins, P. and Lanceros-Méndez, S., Adva Funct Mater 23 (27), 33713385 (2013).CrossRefGoogle Scholar
Correia, D. M., Golcalves, R., Ribeiro, C., Sencadas, V., Botelho, G. L., Gomez-Ribelles, J. L. and lanceros-mendez, s., RSC Adv 4 , 3301333021 (2014).CrossRefGoogle Scholar
Correia, D. M., Sencadas, V., Ribeiro, C., Martins, P. M., Martins, P., Gama, F. M., Botelho, G. and Lanceros-Méndez, S., J Colloid Interf Sci 476, 7986 (2016).CrossRefGoogle Scholar
Sencadas, V., Gregorio, R. and Lanceros-Méndez, S., J Macromolec Sci B 48 (3), 514525 (2009).CrossRefGoogle Scholar
Hong, S. J., Yu, H. S. and Kim, H. W., Acta Biomaterialia 5 (5), 17251731 (2009).CrossRefGoogle Scholar
Sencadas, V., Lanceros-Méndez, S. and Mano, J. F., Thermochimica Acta 424 (1–2), 201207 (2004).CrossRefGoogle Scholar
Liu, Z. H., Pan, C. T., Lin, L. W. and Lai, H. W., Sens Actuat A 193 (0), 1324 (2013).CrossRefGoogle Scholar
Na, H., Liu, X., Li, J., Zhao, Y., Zhao, C. and Yuan, X., Polymer 50 (26), 63406349 (2009).CrossRefGoogle Scholar
Ribeiro, C., Sencadas, V., Ribelles, J. L. G. and Lanceros-Méndez, S., Soft Mater 8 (3), 274287 (2010).CrossRefGoogle Scholar
Correia, D. M., Ribeiro, C., Sencadas, V., Vikingsson, L., Oliver Gasch, M., Gómez Ribelles, J. L., Botelho, G. and Lanceros-Méndez, S., Mater Design 92, 674681 (2016).CrossRefGoogle Scholar
Ribeiro, C., Correia, V., Martins, P., Gama, F. M. and Lanceros-Mendez, S., Colloids Surf B 140, 430436 (2016).CrossRefGoogle Scholar
Sobreiro-Almeida, M. N. T.-M. R., Carvalho, E. O., Cordón, L., Doria, S., Senent, L., Correia, D. M., Ribeiro, C., Lanceros-Méndez, S., Sabater i Serra, R., Gomez Ribelles, J. L. and Sempere, A., Intern J Molec Sci 18 (11), 2391 (2017).CrossRefGoogle Scholar
Gonçalves, R., Martins, P., Correia, D. M., Sencadas, V., Vilas, J. L., León, L. M., Botelho, G. and Lanceros-Méndez, S., RSC Adv 5 (45), 3585235857 (2015).CrossRefGoogle Scholar
Zamani, M., Prabhakaran, M. P. and Ramakrishna, S., Int J Nanomedicine 8, 29973017 (2013).Google Scholar
Correia, D. M., Sencadas, V., Ribeiro, C., Martins, P. M., Martins, P., Gama, F. M., Botelho, G. and Lanceros-Méndez, S., J Colloid Interf Sci 476 (Supplement C), 7986 (2016).CrossRefGoogle Scholar
Prabhakaran, M. P., Ghasemi-Mobarakeh, L., Jin, G. R. and Ramakrishna, S., J. Biosci. Bioeng. 112 (5), 501507 (2011).CrossRefGoogle Scholar
Ribeiro, C., Correia, D. M., Ribeiro, S., Sencadas, V., Botelho, G. and Lanceros-Méndez, S., Eng Life Sci 15 (4), 351356 (2015).CrossRefGoogle Scholar
Ribeiro, C., Sencadas, V., Costa, C. M., Gómez Ribelles, J. L. and Lanceros-Méndez, S., Sci Technol Adv Mater 12 (1) (2011).CrossRefGoogle Scholar
Gonçalves, R., Martins, P., Moya, X., Ghidini, M., Sencadas, V., Botelho, G., Mathur, N. D. and Lanceros-Mendez, S., Nanoscale 7 (17), 80588061 (2015).CrossRefGoogle Scholar
Zheng, J., He, A., Li, J. and Han, C. C., Macromolecular Rapid Commun 28 (22), 21592162 (2007).CrossRefGoogle Scholar
Budyanto, L., Goh, Y. Q. and Ooi, C. P., J Mater Sci: Mater Medicine 20 (1), 105111 (2009).Google Scholar
Rajabi, A. H., Jaffe, M. and Arinzeh, T. L., Acta Biomater. 24, 1223 (2015).CrossRefGoogle Scholar
Rodrigues, M. T., Gomes, M. E., Mano, J. F. and Reis, R. L., in Advanced Materials Forum Iv, edited by Marques, A. T., Silva, A. F., Baptista, A. P. M., Sa, C., Alves, F., Malheiros, L. F. and Vieira, M. (Trans Tech Publications Ltd, Stafa-Zurich, 2008), Vol. 587-588, pp. 7276.Google Scholar
Parssinen, J., Hammaren, H., Rahikainen, R., Sencadas, V., Ribeiro, C., Vanhatupa, S., Miettinen, S., Lanceros-Mendez, S. and Hytonen, V. P., J. Biomed. Mater. Res. A 103 (3), 919928 (2015).CrossRefGoogle Scholar
Ribeiro, C., Parssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytonen, V. P. and Lanceros-Mendez, S., J. Biomed. Mater. Res. A 103 (6), 21722175 (2015).CrossRefGoogle Scholar
Ribeiro, C., Moreira, S., Correia, V., Sencadas, V., Rocha, J. G., Gama, F. M., Ribelles, J. L. G. and Lanceros-Mendez, S., RSC Adv. 2 (30), 1150411509 (2012).CrossRefGoogle Scholar
Ribeiro, C., Correia, D. M., Rodrigues, I., Guardao, L., Guimaraes, S., Soares, R. and Lanceros-Mendez, S., Mater Letters 209, 118121 (2017).CrossRefGoogle Scholar
Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B. and Claes, L., Biomaterials 26 (3), 311318 (2005).CrossRefGoogle Scholar
Valentini, R. F., Vargo, T. G., Gardella, J. A. and Aebischer, P., Biomaterials 13 (3), 183190 (1992).CrossRefGoogle Scholar
Guo, H. F., Li, Z. S., Dong, S. W., Chen, W. J., Deng, L., Wang, Y. F. and Ying, D. J., Colloids Surf B 96, 2936 (2012).CrossRefGoogle Scholar
Martins, P. M., Ribeiro, S., Ribeiro, C., Sencadas, V., Gomes, A. C., Gama, F. M. and Lanceros-Méndez, S., RSC Adv 3 (39), 1793817944 (2013).CrossRefGoogle Scholar