Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T05:26:45.707Z Has data issue: false hasContentIssue false

Preliminary evaluation of the physical properties of red ceramic incorporated with solid residue

Published online by Cambridge University Press:  31 December 2018

Francine M. Nunes
Affiliation:
Federal University of Pelotas (UFPEL), Program Post Graduate in Materials Science and Engineering, Street Gomes Carneiro, number 1, Pelotas-RS, Brasil
Eduarda M. Rangel*
Affiliation:
Federal University of Pelotas (UFPEL), Program Post Graduate in Materials Science and Engineering, Street Gomes Carneiro, number 1, Pelotas-RS, Brasil
Fernando M. Machado
Affiliation:
Federal University of Pelotas (UFPEL), Program Post Graduate in Materials Science and Engineering, Street Gomes Carneiro, number 1, Pelotas-RS, Brasil
Rubens Camaratta
Affiliation:
Federal University of Pelotas (UFPEL), Program Post Graduate in Materials Science and Engineering, Street Gomes Carneiro, number 1, Pelotas-RS, Brasil
Letícia P. Cardoso
Affiliation:
Federal University of Pelotas (UFPEL), Undergraduate in Materials Engineering
Lucas J. Nascimento
Affiliation:
Federal University of Pelotas (UFPEL), Undergraduate in Materials Engineering
Get access

Abstract

The food processing industry highlights the daily generation of large amounts of eggshell solid residue. In this way, this residue becomes a non renewable raw material to be reused as an additive in red ceramics, in order to reduce the volume of disposal to the environment and improve the physical properties of the product. The objective of this work was to evaluate the forming moisture, linear shrinkage of drying and shrinkage of drying burning of ceramic test pieces (CS’s) with formulations with 2% and 3% of white eggshell residue (ER) incorporated in clay. The clay and ER were collected in the city of Pelotas-RS. The ER sample was analyzed by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). After pressing, natural and artificial drying was carried out and the CS’s were burned. These were evaluated through normative parameters C-020/95, C-021/95 and C-026/95. The values obtained for the forming moisture were between 5.82 and 8.78%, for the linear shrinkage of drying between 0.10 and 0.43% and, for the linear contraction burning between -0.29 and 0.08%. The results showed that the addition of ER to the ceramic mass helped in the reduction of the forming moisture and the linear shrinkage of the ceramic test pieces.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VIEIRA, F. C. M.; BORLINI, M. C. and MONTEIRO, S. N.. Characterization of Clayey Ceramic Incorporated with Eucalyptus Firewood Ash . In: TMS 2007 - 136th Annual Meeting & Exhibition, Orlando. Warrendale, PA: The minerals, metals & materials society. (1), 180-180.Google Scholar
SAIDELLES, A. P. F.; SENNA, A. J. T.; KIRCHNER, R. and BITENCOURT, G.. Gestão de resíduos sólidos na indústria de beneficiamento de arroz. Rev. Eletrônic. em Gest., Educ. e Tec. Amb. REGET/UFSM, 5 (5), 904916 (2012). [Solid Waste Management in the Rice Benefit Industry. Electronic Journal in Environmental Management, Education and Technology]Google Scholar
ARSENOVIĆ, M.; RADOJEVIĆ, Z.; JAKŠIĆ, Ž.; PEZO, L.. Mathematical approach to application of industrial wastes in clay brick production – Part I: Testing and analysis. Ceramics International, 41(3), 48904898 (2015).CrossRefGoogle Scholar
PEREZ, E. J. A.; PEREZ, R.; MANENT, M. R.; MANENT, M.; MARTINEZ, S.. Ind. Ceramic., (16), 7-10 (2010).Google Scholar
CORRÊA, T. H. A.. Obtenção de biocimento a base de fosfato de cálcio nanoestruturado a partir de casca de ovo galináceo, Campos dos Goytacazes, Rio de Janeiro, 2015.Google Scholar
NAGA, S.M.; EL-MAGHRABY, H. H.; SABED, M.; SAAD, E. A.. Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshell, J. Ceram. Sci.Technol. (6), 237244 (2015).Google Scholar
Agência, FAO. das Nações Unidas para Agricultura e Alimentação. Available at http://www.fao.org (Accessed 27 May 2018) [Food and Agriculture Organization of the United Nations].Google Scholar
ABPA. Associação Brasileira de Proteína Animal: Relatório Anual de 2017. Available at http://abpa-br.com.br/storage/files/3678c_final_abpa_relatorio_anual.(Accessed 27 May 2018) [Brazilian Animal Protein Association: Annual Report for 2017].Google Scholar
QUINA, M. J.; SOARES, M. A. R.; RIBEIRO, A. A.; MARQUES, A. P.; COSTA, I. H.; MAGALHÃES, M. C.. Feasibility study on windrow co-composting to recycle industrial eggshell waste, Waste Biomass. Valor 5 , 8795 (2014).CrossRefGoogle Scholar
LEITE, F. H. G.; ALMEIDA, T. F.; FARIA, R. T. J.; HOLANDA, J. N. F.. Synthesis and characterization of calcium silicate insulating material using avian eggshell waste. Ceramics International, (43), 4674-4679 (2017).CrossRefGoogle Scholar
VIEIRA, L. A. F.; PINHO, M. D., DA SILVA, S. N., PINHEIRO, I. P.. Obtenção de óxido de cálcio a partir da casca de ovo de galinha. The Journal of Engineering and Exact Sciences. (03) 08 , 1159-1166 (2017) [Obtaining calcium oxide from chicken eggshell].Google Scholar
FREIRE, M. N.; HOLANDA, J. N. F.. Caracterização de resíduo de casca de ovo visando seu aproveitamento em revestimento cerâmico poroso.Cerâmica, (52), 240244 (2006) [Characterization of eggshell residue aiming its use in porous ceramic coating].CrossRefGoogle Scholar
LEITE, F.H.G.; ALMEIDA, T.F.; HOLANDA, J.N.F.. Caracterização de chamote e casca de ovo para produção de material cerâmico. Acta Scientiae & Technicae. 2 (3), 3943 (2015) [Characterization of shrimp and eggshell for the production of ceramic material].Google Scholar
MITTAL, A.; TEOTIA, M.; SONI, R.K.; MITTAL, J.. Applications of egg shell and egg shell membrane as adsorbents: A review, Journal of Molecular Liquids. (223), 376-387 (2016).CrossRefGoogle Scholar
RANGEL, E. M.; Melo, C.C.N.; Carvalho, C.O.; Rodrigues, D.L.C.; Osório, A.G.; Machado, F.M., Rev. Bras. Eng. Sust. 3 (2017) 1-6.Google Scholar
M-CIENTEC C-020: Argilas – Determinação da Umidade de Conformação. CIENTEC, Porto Alegre, RS, (1995) [Clays - Determination of Forming Moisture].Google Scholar
M-CIENTEC C-021: Argilas - Determinação da contração linear de secagem. Porto Alegre - RS, (1995) [Clays - Determination of the linear shrinkage of drying].Google Scholar
M-CIENTEC C-026: Argilas - Determinação da contração linear de queima. Porto Alegre - RS, (1995) [Clays - Determination of linear firing contraction].Google Scholar
WANG, S.; ZHOU, G.; MAA, Y.; GAO, L.; SONG, R.; JIANG, G.; LU, G.. Molecular dynamics investigation on the adsorption behaviors of H2O, CO2, CH4 and N2 gases on calcite (1 1 0) surface. Applied Surface Science. (385), 616-621 (2016).CrossRefGoogle Scholar
ISENHARD, J. L. R. F.. Estimativa do tempo de secagem de meios porosos inertes à base de argila em um modelo experimental. [Thesis]. Porto Alegre: Department of Mining, Metallurgy and Materials Engineering - Federal University of Rio Grande do Sul; (2009) [Estimation of the drying time of clay-based inert porous media in an experimental model].Google Scholar
FLOSS, M. F.; THOMÉ, A.. Adição de resíduo proveniente do corte e polimento de rochas basálticas em materiais de cerâmica vermelha. RECIE, (15), 17 (2006) [Addition of residue from the cutting and polishing of basaltic rocks in red ceramic materials].Google Scholar