Published online by Cambridge University Press: 05 April 2016
Due to injuries and disease, there is a great need for a robust, biocompatible, biodegradable, skin-like dermal substitute to repair and regenerate damaged or lost skin. A novel electrochemical process was used to fabricate planarly aligned, densely packed collagen-based sheet which closely mimics the major structure of collagen in skin. The collagen matrix was characterized by scanning electron microscopy (SEM), oxygen permeation, moisture vapor transmission rate (MVTR), and mechanical strength. The seeding and proliferation of adipose derived stem cells (ADSCs) on the matrix was also evaluated. The results indicate that electrochemically-aligned collagen matrix has good MVTR, superior oxygen permeability, and is robust and biocompatible. Thus, it will be evaluated in vivo in the near future as a dermal substitute material.