Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T07:26:45.214Z Has data issue: false hasContentIssue false

Pre-Patterned CVD Graphene: Insights on ALD deposition parameters and their influence on Al2O3 and graphene layers

Published online by Cambridge University Press:  18 March 2016

Gabriela B. Barin*
Affiliation:
Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, MA 02139, United States Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Sergipe, Av.Marechal Rondon, São Cristóvão 49000-100, Brazil
Antonio G. Souza Filho
Affiliation:
Departamento de Física, Univ.Federal do Ceará, P.O.Box 6030, Fortaleza, 60440-900, Brazil
Ledjane S. Barreto
Affiliation:
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Sergipe, Av.Marechal Rondon, São Cristóvão 49000-100, Brazil
Jing Kong
Affiliation:
Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, MA 02139, United States
Get access

Abstract

Fabrication of graphene nanostructures it is important for both investigating their intrinsic physical properties and applying them into various functional devices. In this work we present a study on atomic layer deposition (ALD) of Al2O3 to produce patterned graphene through area-selective chemical vapor deposition (CVD) growth. A systematic parametric study was conducted to determine how the number of cycles and the purging time affect the morphology and the electrical properties of both graphene and Al2O3 layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, L.H., Zorn, G., Castner, D.G., Solanki, R., Lerner, M.M., Yan, M., J.Mat. Chem 20, 5041 (2010).CrossRefGoogle Scholar
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H-Y., Grill, A., Avouris, Ph., Science. 327, 662 (2010).Google Scholar
Li, H., Xu, C., Srivastava, N., Banerjee, K., IEEE Trans on Elec Devices. 56, 1799 (2009).CrossRefGoogle Scholar
Kim, K.S., Zhao, Y., Jang, H., Yoon Lee, S., Kim, J.M., Kim, K.S., Ahn, J-H, Kim, P., Choi, J-Y, Hong, B.H, Nature. 457, 706 (2009).Google Scholar
Han, M. Y., Ozyilmaz, B., Zhang, Y., Kim, P., Physical Review Letters. 98, 206 (2007).Google Scholar
Hofmann, M., Hsieh, Y.P., Hsu, A.L., Kong, J., Nanoscale. 6, 289 (2013).CrossRefGoogle Scholar
Xu, Z., Gao, C., ACS Nano. 5, 2908 (2011).Google Scholar
Kwon, S., Kim, T., Kim, Y., Byun, M., Lin, Z., Suh, K., Yoon, D., Yang, W.,Soft Matter.7, 6811 (2011).Google Scholar
Safron, N., Kim, M., Gopalan, P., Arnold, M.S., Advanced Materials. 24, 1041( 2012).Google Scholar
Barin, GB, Song, Y, Gimenez, I.F, Souza Filho, AG, Barreto, L.S., Kong, J., Carbon. 84,82 (2015)Google Scholar
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Phys Rev Let. 97, 187 ( 2006).Google Scholar
Cheng, Z., Zhou, Q., Wang, C., Li, Q., Wang, C., Fang, Y., Nano Letters. 11, 767 (2011)Google Scholar
Berciaud, S., Ryu, S., Brus, L.E., Heinz, T.F., Nano Letters. 9, 346 (2009)14.CrossRefGoogle Scholar
Ryu, S., Liu, L., Berciaud, S., Yu, Y-J, Liu, H., Kim, P., Flynn, G. W., Brus, L.E, Nano Letters. 10, 4944 (2010)CrossRefGoogle Scholar
Miikkulainen, V., Leskelä, M., Ritala, M., Puurunen, R.L., J.of App Phys. 113, 021301 (2013).Google Scholar
Puurunen, R.L., Journal of Applied Physics, 97, 121 (2005).CrossRefGoogle Scholar