Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T05:02:34.406Z Has data issue: false hasContentIssue false

Production and Characterization of Tb3+/Yb3+ Co-Activated AlON Thin Films for Down Conversion Applications in Photovoltaic Cells

Published online by Cambridge University Press:  05 July 2017

K. Tucto*
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
L. Flores
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
J. Guerra
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
J. Töfflinger
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
J. Dulanto
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
R. Grieseler
Affiliation:
Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany
A. Osvet
Affiliation:
Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
M. Batentschuk
Affiliation:
Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
R. Weingärtner
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
Get access

Abstract

Terbium and ytterbium co-doped aluminum oxynitride thin films were grown onto silicon substrates using radiofrequency magnetron sputtering. Aluminum oxynitride samples doped with 4.6 at. % of Yb3+ and co-doped with 0.4 at. % of Tb3+ were obtained. The prepared samples were annealed from 150°C to 850°C in steps of 100°C. By using energy dispersive X-ray analysis we measured the sample composition and the doping concentration. The emission intensities at different annealing temperatures were characterized using photoluminescence measurements upon excitation at 325 nm. The 5D47F5 main transition of Tb3+ and the characteristic near infrared emission at 980 nm of Yb3+ were recorded. In order to study the luminescence behavior of the samples in terms of a down conversion process, we have plotted the integrated areas of the main transition peaks versus the annealing temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hamadani, B. H. and Dougherty, B., in Semiconductor Materials for Photovoltaic Cells, edited by Parans Paranthanman, M., Wong-Ng, W. and Bhattacharya, R. N. (Springer International Publishing, Switzerland, 2016), p. 229245 Google Scholar
Richards, B. S., Sol. Energ. Mat. Sol. Cells 90 (15), 23292337 (2006)Google Scholar
Alharbi, F. H., Kais, S., Renew. Sust. Energ. Rev. 43, 10731089 (2015)CrossRefGoogle Scholar
Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., del Cañizo, C., and Tobias, I., Sol. Energ. Mat. Sol. Cells 91 (4), 238249 (2007)Google Scholar
van der Ende, B. M., Aarts, L., and Meijerink, A., Phys. Chem. Chem. Phys. 11, 1108111095 (2009)Google Scholar
Kawano, K., Hong, B. C., Sakamoto, K., Tsuboi, T., and Seo, H. J., Opt. Mater. 31 (9), 13531356 (2009)Google Scholar
Richards, B. S., Sol. Energ. Mat. Sol. Cells 90 (9), 11891287 (2006)Google Scholar
L Yuan, J., Zeng, X. Y., Zhao, J. T., Zhang, Z. J., Chen, H. H., and Yang, X.X., J. Phys. D: Appl. Phys. 41, 105406 (2008)Google Scholar
Bai, W., Liu, Y., Wang, Y., Qiang, X., and Feng, L., Ceram. Int. 41 (10), 1289612900 (2015)CrossRefGoogle Scholar
Molina, P., Vasyliev, V., Víllora, E. G., and Shimamura, K, J. Appl. Phys. 110, 123527 (2011)Google Scholar
Pan, Z., Sekar, G., Akrobetu, R., Mu, R., and Morgan, S.H. in Enhanced visible to near-infrared quantum cutting in Tb and Yb co-doped oxyfluoride glass-ceramic, MRS Proceedings, 1471 (2012)Google Scholar
Lahoz, F., Martin, I. R., and Méndez-Ramos, J., J. Chem. Phys. 120, 6180 (2004)Google Scholar
Terra, I. A. A., Borrero-González, L. J., Figueredo, T. R., Almeida, J. M. P., Hernandes, A. C., Nunes, L. A. O., Malta, O. L., Lumin, J.. 132, 16781682 (2012)Google Scholar
Hu, J., Xia, H., Hu, H., Zhang, Y., Jiang, H., and Chen, B., J. Appl. Phys. 112 (7), 073518-1-073518-5 (2012)Google Scholar
Wang, Q., Yang, B., Zhang, Y., Xia, H., Zhao, T., and Jiang, H., J. Alloy. Comp. 581, 801804 (2013)CrossRefGoogle Scholar
Fang, Q., Chen, H., Xu, F., Wang, S., Liang, Z., and Jiang, C., Chin. Opt. Lett. 8, 10711174 (2010)Google Scholar
Lakshminarayana, G., Yang, H., Ye, S., Liu, Y., and Qiu, J., J. Phys. D: Appl. Phys. 41, 175111 (2008)Google Scholar
Taniyasu, Y., Kasu, M. and Makimoto, T., Nature 441, 325328 (2006)Google Scholar
Park, Y. S., Opto-electronics Review 9 (2), 117124 (2001)Google Scholar
Kinoshita, T., Hironaka, K., Obata, T., Nagashima, T., Dalmau, R., Schlesser, R., Moody, B., Xie, J., Inoue, S., Kumagai, Y., Koukitu, A., and Sitar, Z., Appl. Phys. Express 5, 122101 (2012)Google Scholar
Hirayama, H., Fujikawa, S., Noguchi, N., Norimatsu, J., Takano, T., Tsubaki, K., and Kamata, N., Phys. Status Solidi a 206, 11761182 (2009)Google Scholar
Weingärtner, R., Erlenbach, O., Winnacker, A., Welte, A., Brauer, I., Mendel, H., Strunk, H. P., Ribeiro, C. T. M., and Zanatta, A. R., Opt. Mater 28, 790793 (2006)Google Scholar
Guerra, J. A., Montañez, L., Winnacker, A., De Zela, F., and Weingärtner, R., Phys. Status Solidi (C) 12, 11831186 (2015)Google Scholar
Mendel, H., Aldabergenova, S. B., Weingärtner, R., Frank, G., Strunk, H. P., and Andreev, A. A., Opt Mater 28, 794796 (2006)Google Scholar
Tucto, K., Flores, L. F., Guerra, J. A., Grieseler, R., Kups, T., Pezoldt, J., Osvet, A., Batentschuk, M., and Weingärtner, R., Mater Sci. Forum 890, 299302 (2016)CrossRefGoogle Scholar
Lozykowski, H. J. and Jadwisienczak, W. M., Phys. Status Solidi b 244, 2109–126 (2007)Google Scholar
Benz, F., Strunk, H. P., Schaab, J., Künecke, U., and Wellmann, P., J. Appl. Phys. 114, 073518–6 (2013)Google Scholar
Guerra, J. A., De Zela, F., Tucto, K., Montañez, L., Töfflinger, J. A., Winnacker, A., and Weingärtner, R., J. Phys. D: Appl. Phys. 49, 375104–7 (2016)Google Scholar