Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T09:24:04.468Z Has data issue: false hasContentIssue false

Reinforced Pores in Porous Steels Obtained with Matrix Soluble Space Holders

Published online by Cambridge University Press:  14 October 2019

G.O. Neves*
Affiliation:
Universidade Federal de Santa Catarina, Laboratório de Materiais, Campus Trindade, Florianópolis, SC88040-900, Brazil.
G. Paz
Affiliation:
Universidade Federal de Santa Catarina, Laboratório de Materiais, Campus Trindade, Florianópolis, SC88040-900, Brazil.
N. Araya
Affiliation:
Universidade Federal de Santa Catarina, Laboratório de Materiais, Campus Trindade, Florianópolis, SC88040-900, Brazil.
C. Binder
Affiliation:
Universidade Federal de Santa Catarina, Laboratório de Materiais, Campus Trindade, Florianópolis, SC88040-900, Brazil.
A.N. Klein
Affiliation:
Universidade Federal de Santa Catarina, Laboratório de Materiais, Campus Trindade, Florianópolis, SC88040-900, Brazil.
Get access

Abstract

This paper presents a novel way to obtain reinforced pores by the dissociation of mixed carbides during sintering. Porous materials have a wide range of applications such as dampeners, light structures, etc. But usually pores act as points of stress concentration and crack nucleation, harming the mechanical properties of these materials. Methods have been developed to control the shape and size of pores but, until now, there are no techniques that allow reinforcing the material around the pores. To address this, steels were prepared by adding 1, 3 and 5 wt.% of Mo1.5Cr0.5C mixed carbide particles to a iron matrix by metal injection moulding. The results showed that during sintering, the dissociation of the carbide followed by the dissolution of the elements in the matrix generated rounded secondary pores with a reinforced vicinity, which increased the mechanical strength of the materials. The presence of rounded pores encircled by an enriched vicinity can allow the production of porous materials with exceptional fatigue strength and fracture toughness.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LIU, P.S. and , C. G.F, POROUS MATERIALS Processing and Applications, 1st ed. (Butterworth-Heinemann, Oxford, 2014).Google Scholar
Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer Netherlands, Dordrecht, 2004).CrossRefGoogle Scholar
Chi, I.S., Bux, S.K., Bridgewater, M.M., Star, K.E., Firdosy, S., Ravi, V., and Fleurial, J.-P., MRS Adv. 1, 1169 (2016).CrossRefGoogle Scholar
Gomes, M.A., Wronski, A.S., and Wright, C.S., Int. J. Fract. 83, 207 (1997).CrossRefGoogle Scholar
Hadrboletz, A. and Weiss, B., Int. Mater. Rev. 42, 1 (1997).CrossRefGoogle Scholar
Chawla, N. and Deng, X., Mater. Sci. Eng. A 390, 98 (2005).CrossRefGoogle Scholar
Danninger, H., Xu, C., Khatibi, G., Weiss, B., and Lindqvist, B., Powder Metall. 55, 378 (2012).CrossRefGoogle Scholar
Banhart, J., Prog. Mater. Sci. 46, 559 (2001).CrossRefGoogle Scholar
Baumgärtner, F., Duarte, I., and Banhart, J., Adv. Eng. Mater. 2, 168 (2000).3.0.CO;2-O>CrossRefGoogle Scholar
Lefebvre, L.-P., Banhart, J., and Dunand, D.C., Adv. Eng. Mater. 10, 775 (2008).CrossRefGoogle Scholar
Shu, Y., Suzuki, A., Takata, N., and Kobashi, M., MRS Adv. 4, 1515 (2019).CrossRefGoogle Scholar
GERMAN, R.M., Powder Metallurgy Of Iron And Steel (1998).Google Scholar
Binder, C., Bendo, T., Pereira, R. V., Hammes, G., de Mello, J.D.B., and Klein, A.N., Powder Metall. 58, 384 (2016).CrossRefGoogle Scholar
Binder, C., Bendo, T., Hammes, G., Neves, G.O., Binder, R., de Mello, J.D.B., and Klein, A.N., Carbon N. Y. 124, 685 (2017).CrossRefGoogle Scholar
Klein, A.N., Cardoso, R.P., Pavanati, H.C., Binder, C., Maliska, A.M., Hammes, G., Fusao, D., Seeber, A., Brunatto, S.F., and Muzart, J.L.R., Plasma Sci. Technol. 15, 70 (2013).CrossRefGoogle Scholar
De Mello, J.D.B., Binder, C., Binder, R., and Klein, A.N., Wear 271, 1862 (2011).CrossRefGoogle Scholar
Knepfler, C. A., Faber, K.T., Weertman, J., Olson, G.B., Hubbard, C.R., Cavin, O.B., and Packen, N., J. Alloys Compd. 248, 139 (1997).CrossRefGoogle Scholar