Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T10:41:11.167Z Has data issue: false hasContentIssue false

Room Temperature Fabrication of (ZnO)x(InN)1-xfilms with Step-Terrace Structure by RF Magnetron Sputtering

Published online by Cambridge University Press:  06 January 2016

Koichi Matsushima*
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Tomoaki Ide
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Daisuke Yamashita
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Hyunwoong Seo
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Kazunori Koga
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Masaharu Shiratani
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Naho Itagaki
Affiliation:
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
Get access

Abstract

We study effects of deposition temperature on growth mode and surface morphologyof hetero-epitaxial (ZnO)x(InN)1-x (ZION) films on ZnOtemplates. ZION films deposited at low temperature of RT-250oC growtwo dimensionally, whereas ZION films deposited at high temperature of350-450oC grow three dimensionally. Growth mode is changed fromtwo-dimensional growth mode to three-dimensional one, because the criticalthickness where film strain begin to relax decreases with increasing thedeposition temperature. At high deposition temperatures, the number of pointdefects in ZION films decreases because migration of adatoms on the growingsurface is enhanced. The strain energy in ZION films increases with increasingthe deposition temperature, since the strain energy is not released by pointdefects. Therefore, lattice relaxation for the higher deposition temperaturebegins at the smaller film thickness to release the strain energy. As a result,ZION films with atomically-flat surface were obtained even at RT.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ito, N., Sato, Y., Song, P.K., Kaijio, A., Inoue, K., and Shigesato, Y., Tnin Solid Films 496, 99 (2006).Google Scholar
Lim, J.T., Jeong, C.H., Vonzny, A., Lee, J.H., Kim, M.S., and Yeom, G.Y., Surf. Coat. Techol. 201, 5358 (2007).Google Scholar
Gupta, R.K., Ghosh, K., Patel, R., and Kahol, P.K., Mater. Sci. Eng. B 156, 1 (2009).Google Scholar
Matsushima, K., Hirose, T., Kuwahara, K., Yamashita, D., Uchida, G., Seo, H., Kamataki, K., Koga, K., Shiratani, M., and Itagaki, N., Jpn. J. Appl. Phys. 52, 11NM06 (2013).Google Scholar
Itagaki, N., Iwasaki, T., Watanabe, M., and Den, T., U.S. Patent No. 8274078 (6 November 2008).Google Scholar
Itagaki, N., Shiratani, M., and Uchida, G., PCT/JP2013/055973 (3 May 2013).Google Scholar
Itagaki, N., Matsushima, K., Yamashita, D., Seo, H., Koga, K., and Shiratani, M., Mater. Res. Express 1, 036405 (2014).Google Scholar
Matsushima, K., Shimizu, R., Ide, T., Yamashita, D., Seo, H., Koga, K., Shiratani, M., and Itagaki, N., MRS Proc. 1741 (2015).Google Scholar
Matsushima, K., Shimizu, R., Ide, T., Yamashita, D., Seo, H., Koga, K., Shiratani, M., and Itagaki, N., Thin Solid Films 587, 106111 (2015).Google Scholar
Vinodkumar, R., Navas, I., Porsezian, K., Ganesan, V., Unnikrishnan, N.V., and Mahadevan Pillai, V.P., Spectrochim. Acta A 118, 724 (2014).Google Scholar
Itagaki, N., Kuwahara, K., Nakahara, K., Yamashita, D., Uchida, G., Koga, K., and Shiratani, M., Appl. Phys. Express 4 , 011101 (2011).Google Scholar
Kuwahara, K., Itagaki, N., Nakahara, K., Yamashita, D., Uchida, G., Kamataki, K., Koga, K., and Shiratani, M., Thin Solid Films 520, 4674 (2012).Google Scholar
Look, D. C., Leedy, K. D., Kiefer, A., Claflin, B., Itagaki, N., Matsushima, K., and Surhariadi, I., Opt. Eng. 52 , 033801 (2013).Google Scholar
Itagaki, N., Kuwahara, K., Matsushima, K., and Oshikawa, K., Proc. SPIE 8263, 826306 (2012).CrossRefGoogle Scholar
Itagaki, N., and Kuwahara, K., MRS Proc. 1315, 15 (2011).Google Scholar
Suhariadi, I., Oshikawa, K., Kuwahara, K., Matsushima, K., Yamashita, D., Uchida, G., Koga, K., Shiratani, M., and Itagaki, N., Jpn. J. Appl. Phys. 52, 11NB03 (2013).Google Scholar
Chierchia, R., Bottcher, T., Heinke, H., Einfeldt, S., Figge, S., and Hommel, D., J. Appl. Phys. 93, 8918 (2003).Google Scholar
Yang, C., Fan, H., Xi, Y., Chen, J., and Li, Z., Appl. Surf. Sci. 254, 9 (2008).Google Scholar
Bykhovski, A.D., Gelmont, B.L., and Shur, M.S., J. Appl. Phys. 78, 3691 (1995).CrossRefGoogle Scholar