Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T01:41:08.187Z Has data issue: false hasContentIssue false

Room Temperature Ferromagnetism in Gadolinium-doped Gallium Nitride

Published online by Cambridge University Press:  09 January 2018

Vishal G. Saravade
Affiliation:
Missouri University of Science and Technology, Rolla, MO65409, U.S.A.
Cameron H. Ferguson
Affiliation:
Missouri University of Science and Technology, Rolla, MO65409, U.S.A.
Amirhossein Ghods
Affiliation:
Missouri University of Science and Technology, Rolla, MO65409, U.S.A.
Chuanle Zhou
Affiliation:
Missouri University of Science and Technology, Rolla, MO65409, U.S.A.
Ian T. Ferguson*
Affiliation:
Missouri University of Science and Technology, Rolla, MO65409, U.S.A.
*
*(Email: ianf@mst.edu)
Get access

Abstract

Anomalous Hall effect was observed at room temperature in MOCVD-grown GaGdN from a (TMHD)3Gd source, which can contain oxygen in its organic ligand. GaN, and GaGdN grown using a Cp3Gd precursor which does not contain oxygen only showed the ordinary Hall effect. This indicates that oxygen could have a role in magnetic properties of GaGdN. The relationship between the anomalous Hall conductivity and longitudinal conductivity indicated that metallic conduction, hopping of carriers, and scattering-independent mechanisms are likely responsible for the ferromagnetism. However, this still requires further clarification.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wolf, S., Awschalom, D., Buhrman, R., Daughton, J., Molnar, S., Roukes, M., Chtchelkanova, A. and Treger, D., Science, 294, 1488 (2001).Google Scholar
Kane, M., Gupta, S. and Ferguson, I, “Transition metal and rare earth doping in GaN”, Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temperature Spintronics, pp. 315 (2016).Google Scholar
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., & Ferrand, D., Science, 287, 1019 (2000).Google Scholar
Zhou, C., Ghods, A., Saravade, V., Patel, P., Yunghans, K., Ferguson, C., Feng, Y., Jiang, X., Kucukgok, B., Lu, N. and Ferguson, I., ECS Trans., 77, 3 (2017).Google Scholar
Kane, M., Strassburg, M., Asghar, A., Fenwick, W., Senawiratne, J., Song, Q., Summers, C., Zhang, Z, Dietz, N., and Ferguson, I., Mater. Sci. Eng.: B, 126, 230 (2006).Google Scholar
Strassburgm, M. Senawiratne, J., Hums, C., Dietz, N., Kane, M., Asghar, A., Summers, C., Haboeck, U., Hoffman, A., Azamat, D., Gelhoff, W. and Ferguson, I., Mater. Res. Soc. Symp. Proc., 831, E9.5.1 (2005).Google Scholar
Kane, M., Asghar, A., Vestal, C., Strassburg, M., Senawiratne, J., Zhang, Z., Dietz, N., Summers, C. and Ferguson, I., Semicond. Sci. Tech., 20, L5 (2005).Google Scholar
Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V and Ploog, K, Phys. Rev. Lett., 94, 037205 (2005).Google Scholar
Gupta, S., Tahir, Z., Melton, A., Malguth, E., Yu, H., Liu, Z., Liu, X., Schwartz, J., and Ferguson, I., J. Appl. Phys., 110, 083920 (2011).Google Scholar
Liu, Z., Yi, X., Wang, J., Kang, J., Melton, A., Shi, Y., Lu, N., Wang, J., Li, J. and Ferguson, I., Appl. Phys. Lett., 100, 232408 (2012).Google Scholar
Gao, X., Man, B., Zhang, C., Leng, J., Xu, Y., Wang, Q., Zhang, M. and Meng, Y., J. Alloys Comp., 699, 596 (2017).Google Scholar
Gao, H., Ye, H., Yu, Z.. Zhang, Y., Liu, Y. and Li, Y., Superlatt. Microstructures, 1 (2017).Google Scholar
Nagosa, N., Sinova, J., Onoda, S., Macdonald, A. and Ong, N., Rev. of mod. Phys., 82 (2010).Google Scholar
Tian, Y., Ye, L. and Jin, X., Phys. Rev. Lett., 103, 087206 (2009).Google Scholar
Venkateshvaran, D., Kaiser, W., Boger, A., Althammer, M., Rao, M., Goennenwein, S., Opel, M. and Gross, R., Phys. Rev. B, 78, 092405 (2008).Google Scholar
Fernandez-Pacheco, A., Teresa, J., Orna, J., Morellon, L., Algarabel, P., Pardo, J. and Ibarra, M., Phys. Rev. B, 77, 100403 (2008).Google Scholar
Sangiao, S., Morellon, L., Simon, G., Teresa, J., Pardo, J., Arbiol, J. and Ibarra, M., Phys. Rev. B, 79, 014431 (2009).CrossRefGoogle Scholar
Reed, M., El-Masry, N., Stadelmaier, H., Riturns, M., Reed, M., Parker, C., Roberts, J. and Bedair, S., Appl. Phys. Lett., 79 (2001).CrossRefGoogle Scholar
Jungwirth, J., Niu, Q. and Macdonald, A., Phys. Rev. Lett., 88 (2002).Google Scholar
Shvarkov, S., Ludwig, A., Wieck, A., Cordier, Y., Ney, A., Hardtdegen, H, Haab, A., Trampert, A., Ranchal, R., Herfort, J., Becker, H., Rogalla, D. and Reuter, D., Phys. status solidi B, 251, 1673 (2014).CrossRefGoogle Scholar
Shim, W., Lee, K., Lee, W., Jeon, K., Lee, S. and Jung, M., J. Appl. Phys., 101, 123908 (2007).Google Scholar