Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T10:03:23.092Z Has data issue: false hasContentIssue false

Schwarzites for Natural Gas Storage: A Grand-Canonical Monte Carlo Study

Published online by Cambridge University Press:  13 February 2018

Daiane Damasceno Borges*
Affiliation:
Applied Physics Department and Center of Computational Engineering and Science, University of Campinas - UNICAMP, Campinas-SP13083-959, Brazil.
Douglas S. Galvao
Affiliation:
Applied Physics Department and Center of Computational Engineering and Science, University of Campinas - UNICAMP, Campinas-SP13083-959, Brazil.
*
Get access

Abstract

The 3D porous carbon-based structures called Schwarzites have been recently a subject of renewed interest due to the possibility of being synthesized in the near future. These structures exhibit negatively curvature topologies with tuneable porous sizes and shapes, which make them natural candidates for applications such as CO2 capture, gas storage and separation. Nevertheless, the adsorption properties of these materials have not been fully investigated. Following this motivation, we have carried out Grand-Canonical Monte Carlo simulations to study the adsorption of small molecules such as CO2, CO, CH4, N2 and H2, in a series of Schwarzites structures. Here, we present our preliminary results on natural gas adsorptive capacity in association with analyses of the guest-host interaction strengths. Our results show that Schwarzites P7par, P8bal and IWPg are the most promising structures with very high CO2 and CH4 adsorption capacity and low saturation pressure (<1bar) at ambient temperature. The P688 is interesting for H2 storage due to its exceptional high H2 adsorption enthalpy value of -19kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gelb, L. D. and Gubbins, K. E., Langmuir 15, 305 (1998).CrossRefGoogle Scholar
Wu, Y. et al. ., Nature Commun. 6, 6141 (2015).CrossRefGoogle Scholar
Sajadi, S. M., Owuor, P. S., Schara, S., Woellner, C. F., Rodrigues, V., Vajtai, R., Lou, J., Galvão, D. S., Tiwary, C. S., and Ajayan, P.M., Adv. Mater. 1704820 (2017).Google Scholar
Lherbier, A., Terrones, H., and Charlier, J.-C., Phys. Rev. B 9020, (2014).Google Scholar
Terrones, H. and Terrones, M., New J. Phys. 5, 126 (2003).CrossRefGoogle Scholar
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
Harris, J. G. and Yungt, K. H., J. Phys. Chem. 99, 12021 (1995).CrossRefGoogle Scholar
Potoff, J. J. and Siepmann, J. I., AIChE J. 47, 1676 (2001).CrossRefGoogle Scholar
Straub, J. E. and Karplus, M., Chem. Phys. 158, 221 (1991).CrossRefGoogle Scholar
Yang, Q. and Zhong, C., J. Phys. Chem. B 109, 11862 (2005).CrossRefGoogle Scholar
Martin, M. G. and Siepmann, J. I., J. Phys. Chem. B 102, 2569 (1998).CrossRefGoogle Scholar
Peng, D.-Y. and Robinson, D. B., Ind. Eng. Chem. Fundam. 15, 59 (1976).CrossRefGoogle Scholar
Yang, Q. and Zhong, C., J. Phys. Chem. B 110, 17776 (2006).CrossRefGoogle Scholar
Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S., and Calero, S., J. Chem. Theory Comput. 4, 1107 (2008).CrossRefGoogle Scholar
Düren, T., Millange, F., Férey, G., Walton, K. S., and Snurr, R. Q., J. Phys. Chem. C 111, 15350 (2007).CrossRefGoogle Scholar
Myers, A. L. and Monson, P. A., Langmuir 18, 10261 (2002).CrossRefGoogle Scholar
Suh, M. P., Park, H. J., Prasad, T. K., and Lim, D.-W., Chem. Rev. 112, 782 (2012).CrossRefGoogle Scholar
Borges, D. D. et al. ., J. Phys. Chem. C. 121, 26822 (2017).CrossRefGoogle Scholar
Krasnov, P. O., Shkaberina, G. S., Kuzubov, A. A., and Kovaleva, E. A., Appl. Surf. Sci. 416, 766 (2017).CrossRefGoogle Scholar
Borges, D. D. and Galvão, D. S. - to be published.Google Scholar