Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T22:04:58.110Z Has data issue: false hasContentIssue false

Self-Organized Lead(II) Sulfide Quantum Dots Superlattice

Published online by Cambridge University Press:  07 March 2017

José Maria C. da Silva Filho*
Affiliation:
Institute of Physics “Gleb Wathagin”, University of Campinas
Victor A. Ermakov
Affiliation:
Institute of Physics “Gleb Wathagin”, University of Campinas
Luiz G. Bonato
Affiliation:
Institute of Chemistry, University of Campinas
Ana F. Nogueira
Affiliation:
Institute of Chemistry, University of Campinas
Francisco C. Marques
Affiliation:
Institute of Physics “Gleb Wathagin”, University of Campinas
Get access

Abstract

We show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Y., Suna, A., Mahler, W., Kasowski, R., PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 73157322. doi:10.1063/1.453325.CrossRefGoogle Scholar
Machol, J.L., Wise, F.W., Patel, R.C., Tanner, D.B., Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B. 48 (1993) 28192822. doi:10.1103/PhysRevB.48.2819.CrossRefGoogle ScholarPubMed
Litvin, A.P., Parfenov, P.S., Ushakova, E. V., Fedorov, A. V., Artemyev, M. V., Prudnikau, A. V., Golubkov, V. V., Baranov, A. V., PbS Quantum Dots in a Porous Matrix: Optical Characterization, J. Phys. Chem. C. 117 (2013) 1231812324. doi:10.1021/jp402287b.CrossRefGoogle Scholar
Corricelli, M., Altamura, D., De Caro, L., Guagliardi, A., Falqui, A., Genovese, A., Agostiano, A., Giannini, C., Striccoli, M., Curri, M.L., Self-organization of mono- and bi-modal PbS nanocrystal populations in superlattices, CrystEngComm. 13 (2011) 3988. doi:10.1039/c0ce00874e.CrossRefGoogle Scholar
Liu, X., Zhang, M., Studies on PbS and PbSe detectors for IR system, Int. J. Infrared Millimeter Waves. 21 (2000) 16971701. doi:10.1023/A:1006676029014.CrossRefGoogle Scholar
Cheragizade, M., Yousefi, R., Jamali-Sheini, F., Mahmoudian, M.R., Sáaedi, A., Ming Huang, N., Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation, Mater. Sci. Semicond. Process. 26 (2014) 704709. doi:10.1016/j.mssp.2014.08.026.CrossRefGoogle Scholar
Yuan, M., Liu, M., Sargent, E.H., Colloidal quantum dot solids for solution-processed solar cells, Nat. Energy. 1 (2016) 16016. doi:10.1038/nenergy.2016.16.CrossRefGoogle Scholar
Crisp, R.W., Kroupa, D.M., Marshall, A.R., Miller, E.M., Zhang, J., Beard, M.C., Luther, J.M., Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells., Sci. Rep. 5 (2015) 9945. doi:10.1038/srep09945.CrossRefGoogle ScholarPubMed
Obaid, A.S., Mahdi, M.A., Hassan, Z., Bououdina, M., PbS nanocrystal solar cells fabricated using microwave-assisted chemical bath deposition, Int. J. Hydrogen Energy. 38 (2013) 807815. doi:10.1016/j.ijhydene.2012.10.046.CrossRefGoogle Scholar
Baranov, A. V., Ushakova, E. V., Golubkov, V. V., Litvin, A.P., Parfenov, P.S., Fedorov, A. V., Berwick, K., Self-organization of colloidal PBS quantum dots into highly ordered superlattices, Langmuir. 31 (2015) 506513. doi:10.1021/la503913z.CrossRefGoogle ScholarPubMed
Altamura, D., Corricelli, M., De Caro, L., Guagliardi, A., Falqui, A., Genovese, A., Nikulin, A.Y., Curri, M.L., Striccoli, M., Giannini, C., Structural investigation of three-dimensional self-assembled PbS binary superlattices, Cryst. Growth Des. 10 (2010) 37703774. doi:10.1021/cg100601a.CrossRefGoogle Scholar
Hines, M.A., Scholes, G.D., Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution, Adv. Mater. 15 (2003) 18441849. doi:10.1002/adma.200305395.CrossRefGoogle Scholar
Murray, C.B., Kagan, C.R., Bawendi, M.G., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545610. doi:10.1146/annurev.matsci.30.1.545.CrossRefGoogle Scholar
Seghaier, S., Kamoun, N., Brini, R., Amara, A.B., Structural and optical properties of PbS thin films deposited by chemical bath deposition, Mater. Chem. Phys. 97 (2006) 7180. doi:10.1016/j.matchemphys.2005.07.061.CrossRefGoogle Scholar
Göde, F., Güneri, E., Emen, F.M., Emir Kafadar, V., Ünlü, S., Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films, J. Lumin. 147 (2014) 4148. doi:10.1016/j.jlumin.2013.10.050.CrossRefGoogle Scholar
Segets, D., Lucas, J.M., Klupp Taylor, R.N., Scheele, M., Zheng, H., Alivisatos, A.P., Peukert, W., Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements, ACS Nano. 6 (2012) 90219032. doi:10.1021/nn303130d.CrossRefGoogle ScholarPubMed
Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J.C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G., Hens, Z., Size-Dependent Optical Properties of Colloidal PbS Quantum Dots, ACS Nano. 3 (2009) 30233030. doi:10.1021/nn900863a.CrossRefGoogle ScholarPubMed
Clark, S.W., Harbold, J.M., Wise, F.W., Resonant Energy Transfer in PbS Quantum Dots, J. Phys. Chem. C. 111 (2007) 73027305. doi:10.1021/jp0713561.CrossRefGoogle Scholar
Peterson, J.J., Krauss, T.D., Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots, Nano Lett. 6 (2006) 510514. doi:10.1021/nl0525756.CrossRefGoogle ScholarPubMed
Manna, L., Scher, E.C., Li, L.-S., Alivisatos, A.P., Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, J. Am. Chem. Soc. 124 (2002) 71367145. doi:10.1021/ja025946i.CrossRefGoogle ScholarPubMed
Hammond, C., The Basics of Crystallography and Diffraction, Third ed., Oxford University Press, Oxford, 2009.Google Scholar
Antao, S.M., Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups, Am. Mineral. 97 (2012) 661665. doi:10.2138/am.2012.3905.CrossRefGoogle Scholar