Article contents
Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H2 Production
Published online by Cambridge University Press: 17 April 2018
Abstract
Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron−hole recombination and narrow photo-response range. In this paper, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C3N4), and UV light active, strontium pyroniobate, Sr2Nb2O7. Heterojunctions made from a combination of g-C3N4 and nitrogen-doped Sr2Nb2O7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogen evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C3N4 and N-doped Sr2Nb2O7 at 700°C (CN/SNON-700) showed better performance than heterojunction made from g-C3N4 and Sr2Nb2O7 (CN/SNO). A plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
Footnotes
Current Address: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
Current Address: Electrochemical Materials Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
References
- 1
- Cited by