Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T15:03:56.423Z Has data issue: false hasContentIssue false

Smooth TiO2 Thin Films Grown by Aqueous Spray Deposition for Long-Wave Infrared Applications

Published online by Cambridge University Press:  11 January 2018

Sarmad Fawzi Hamza Alhasan
Affiliation:
Electrical and Computer Engineering, University of Central Florida, Orlando, FL32816-2362, USA Laser and Optoelectronics Engineering, University of Technology, Baghdad IRAQ.
Seth R. Calhoun
Affiliation:
Physics, University of Central Florida, Orlando FL32816-2385USA
Hussain Abouelkhair
Affiliation:
Physics, University of Central Florida, Orlando FL32816-2385USA
Vanessa C. Lowry
Affiliation:
Physics, University of Central Florida, Orlando FL32816-2385USA
Robert E. Peale*
Affiliation:
Physics, University of Central Florida, Orlando FL32816-2385USA
Imen Rezadad
Affiliation:
NanoSpective Inc, 12565 Research Parkway, Ste. 390, Orlando FL32826USA
Evan M. Smith
Affiliation:
KBRWyle, Beavercreek OH45431USA. Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB OH45433, USA
Justin W. Cleary
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB OH45433, USA
Isaiah O. Oladeji
Affiliation:
SISOM Thin Films LLC, 1209 West Gore Street, Orlando, FL32805, USA. info@sisomtf.com
Get access

Abstract

Self-assembled TiO2 films deposited by aqueous-spray deposition were investigated to evaluate morphology, crystalline phase, and infrared optical constants. The Anatase nano-crystalline film had ∼10 nm characteristic surface roughness sparsely punctuated by defects of not more than 200 nm amplitude. The film is highly transparent throughout the visible to wavelengths of 12 μm. The indirect band gap was determined to be 3.2 eV. Important for long-wave infrared applications is that dispersion in this region is weak compared with the more commonly used dielectric SiO2 for planar structures. An example application to a metal-insulator-metal resonant absorber is presented. The low-cost, large-area, atmospheric-pressure, chemical spray deposition method allows conformal fabrication on flexible substrates for long-wave infrared photonics.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alhasan, S., Khalilzadeh-Rezaie, F., Peale, R.E., and Oladeji, I., MRS Advances, 1, 3169 (2016).CrossRefGoogle Scholar
Siefke, T., Kroker, S., Pfeiffer, K., Puffky, O., Dietrich, K., Franta, D., Ohlídal, I., Szeghalmi, A., Kley, E.-B., and Tünnermann, A., Adv. Opt. Mater. 4, 1780 (2016).CrossRefGoogle Scholar
Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., and Masselink, W. T., Appl. Opt. 51, 6789 (2012).Google Scholar
Peale, R.E., Smith, E., Abouelkhair, H., Oladeji, I.O., Vangala, S., Cooper, T., Grzybowski, G., Khalilzadeh-Rezaie, F., and Cleary, J.W., Opt. Eng. 56, 037109 (2017).Google Scholar
Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R.E., Optics Express 23, 20366 (2015).Google Scholar
Rezaie, F.K., Fredericksen, C.J., Buchwald, W.R., Cleary, J.W., Smith, E.M., Rezadad, I., Nath, J., Figueiredo, P., Shahzad, M., Boroumand, J., Yesiltas, M., Medhi, G., Davis, A., and Peale, R.E., MRS Online Proceedings Library Archive 1510 (2013).Google Scholar
Tang, H., Berger, H., Schmid, P.E., and Levy, F., Solid State Commun. 92, 267 (1994).Google Scholar
J.I.P., Optical Processes in Semiconductors (Dover, New York, 1971), p. 3442.Google Scholar
Moss, T.S., Optical Properties of Semiconductors (Butterworth Scientific, London, 1959), p. 3438.Google Scholar
Tang, H., Prasad, K., Sanjines, R., Schmid, P.E., and Levy, F., J. Appl. Phys. 75, 2042 (1994).CrossRefGoogle Scholar
Takikawa, H., Matsui, T., Sakakibara, T., Bendavid, A., and Martin, P.J., Thin Solid Films 348, 145 (1999).CrossRefGoogle Scholar
Boschloo, G.K., Goossens, A., and Schoonman, J., J. Electrochem. Soc. 144, 1311 (1997).Google Scholar
Aoki, A. and Nogami, G., J. Electrochem. Soc. 143, L191 (1996).CrossRefGoogle Scholar
Wang, Z., Helmersson, U., and P-O., Käll, Thin Solid Films 405, 50 (2002).CrossRefGoogle Scholar
Calhoun, S.R., Lowry, V.C., Stack, R.T., Evans, R.N., Brescia, J.R., Fredricksen, C.J., Nath, J., Peale, R.E., Smith, E.M., Cleary, J.W., MRS Advances, submitted (2017).Google Scholar
Gonzalez, R.J., Zallen, R., and Berger, H., Phys. Rev. B 55, 7014 (1997).CrossRefGoogle Scholar
Hovel, H. J., Electrochem, J.. Soc. 125, 983 (1978).Google Scholar
Somberg, H., Proc. 20th IEEE Photovoltaics Specialists Conference, p. 1557 (1988).Google Scholar
Huang, Aibin, Zhu, Jingting, Zhou, Yijie, Yu, Yu, Liu, Yan, Yang, Songwang, Ji, Shidong, Lei, Lei and Jin, Ping, Nanotechnology 28, 1 (2017).Google Scholar