Published online by Cambridge University Press: 15 July 2019
Organic light emitting diodes (OLEDs) have drawn great attention owing to their potential applications in high-quality flat display panels and smart solid-state lighting. Over the last three decades, numerous approaches have been made on material design and device physics to achieve high-efficiency and long-lifespan. Herein, we report a novel tactic to employ solution-processed hybrid metal oxide, molybdenum trioxide-tungsten trioxide (MoO3:WO3), as an efficient and stable hole injection/transport (HIL/HTL) and electron blocking layer for efficient OLEDs. By using phosphorescent orange-red emitter tris(2-phenylquinoline)-iridium(III) Ir(2-phq)3, MoO3:WO3 HIL based OLED device exhibits a power efficiency of 27.7 lm W-1 and 22.9 lm W-1 at 100 and 1000 cd m-2, respectively, which are 89% and 157% higher than that of conventional OLED device consisting of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as an HIL. Moreover, the resulted device also displays 1.6 times lower turn-on voltage and 3.0 time higher brightness as compare to other counter part. The higher device performances of OLED device may be attributed to robust hole transporting ability, balanced charge carrier in the recombination zone and non-acidic nature of designed HIL. Our results demonstrate that a novel alternative approach based on transition metal oxide hybrid HIL/HTL as a substitute to PEDOT:PSS for high-efficiency solution process OLEDs.