Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T23:11:23.699Z Has data issue: false hasContentIssue false

Strong Photon Absorption in 2-D Material-Based Spiral Photovoltaic Cells

Published online by Cambridge University Press:  13 January 2016

Mohammad Hossein Tahersima
Affiliation:
The George Washington University, Department of Electrical & Computer Engineering, 800 22nd Street NW, Washington, United States of America, 20052
Volker J. Sorger*
Affiliation:
The George Washington University, Department of Electrical & Computer Engineering, 800 22nd Street NW, Washington, United States of America, 20052
*
*(Email: sorger@gwu.edu)
Get access

Abstract

Atomically thin transition-metal dichalcogenides (TMD) hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photo-absorption and mechanical flexibility. However, reported absorption for photovoltaic cells based on TMD materials is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we discuss that taking advantage of the mechanical flexibility of two dimensional (2D) materials by rolling their Van der Waal heterostructures such as molybdenum disulfide (MoS2)/graphene (Gr)/hexagonal boron nitride (hBN) to a spiral solar cell, leads to strong light matter interaction allowing for solar absorptions up to 90%. The optical absorption of a 1 µm-long hetero-material spiral cell consisting of the aforementioned hetero stacks is about 50% stronger compared to a planar MoS2 cell of the same thickness; although the volumetric absorbing material ratio is only 6%. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Science 306, 666 (2004)Google Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)Google Scholar
Geim, A. K. and Grigorieva, I. V., Nature 499, 419425 (2013)CrossRefGoogle Scholar
Mak, Kin Fai, Lee, Changgu, Hone, James, Shan, Jie, and Heinz, Tony F., Phys. Rev. Lett. 105, 136805 (2010)Google Scholar
Lee, Gwan-Hyoung, Yu, Young-Jun, Cui, Xu, Petrone, Nicholas, Lee, Chul-Ho, Choi, Min Sup, Lee, Dae-Yeong, Lee, Changgu, Yoo, Won Jong, Watanabe, Kenji, Taniguchi, Takashi, Nuckolls, Colin, Kim, Philip, and Hone, James, ACS Nano 2013 7 (9), 79317936 (2013)Google Scholar
Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., Kim, Y. J., Gorbachev, R. V., Georgiou, T., Morozov, S. V., Grigorenko, A. N., Geim, A. K., Casiraghi, C., Castro Neto, A. H., Novoselov, K. S., Science: Vol. 340 no. 6138 pp. 13111314 (2013)Google Scholar
Bernardi, M., Palummo, M., and Grossman, J.C., Nano Lett. 13 (8), 3664 (2013)CrossRefGoogle Scholar
Lee, Chul-Ho, Lee, Gwan-Hyoung, van der Zande, Arend M., Chen, Wenchao, Li, Yilei, Han, Minyong, Cui, Xu, Arefe, Ghidewon, Nuckolls, Colin, Heinz, Tony F., Guo, Jing, Hone, James & Kim, Philip, Nature Nanotechnology 9, 676681 (2014)CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L. and Hone, J., Nature Nanotechnology 5, 722726 (2010)CrossRefGoogle Scholar
Hong, Xiaoping, Kim, Jonghwan, Shi, Su-Fei, Zhang, Yu, Jin, Chenhao, Sun, Yinghui, Tongay, Sefaattin, Wu, Junqiao, Zhang, Yanfeng & Wang, Feng, Nature Nanotechnology 9, 682686 (2014)Google Scholar
Lee, H.S., Min, S.W., Chang, Y.G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., and Im, S., Nano Lett. 12 (7), 3695 (2012)Google Scholar
He, Keliang, Poole, Charles, Mak, Kin Fai, and Shan, Jie, Nano Lett., 13 (6), pp 29312936 (2013)Google Scholar
Conley, Hiram J., Wang, Bin, Ziegler, Jed I., Haglund, Richard F., Pantelides, Sokrates T., and Bolotin, Kirill I., Nano Lett., 13 (8), pp 36263630 (2013)Google Scholar
Yun, Won Seok, Han, S. W., Hong, Soon Cheol, In Kim, Gee, and Lee, J. D., PHYSICAL REVIEW B 85, 033305 (2012)Google Scholar
Splendiani, Andrea, Sun, Liang, Zhang, Yuanbo, Li, Tianshu, Kim, Jonghwan, Chim, Chi-Yung, Galli, Giulia and Wang, Feng, 10, 12711275 (2010)Google Scholar
Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M., Nature 421, 241245 (2003)Google Scholar
Oulton, Rupert F., Sorger, Volker J., Zentgraf, Thomas, Ma, Ren-Min, Gladden, Christopher, Dai, Lun, Bartal, Guy & Zhang, Xiang, Nature 461, 629632 (2009)Google Scholar
Yim, C, O’Brien, M, McEvoy, N, Winters, S, Mirza, I, Lunney, J G and Duesberg, G S, Appl. Phys. Lett. 104 103114 (2014)Google Scholar
Kravets, V G, Grigorenko, A N, Nair, R R, Blake, P, Anissimova, S, Novoselov, K S and Geim, A K, Phys. Rev. B 81 155413 (2010)Google Scholar
Ren, S L, Rao, A M, Eklund, P C and Doll, G L, Appl. Phys. Lett. 62 1760 (1993)Google Scholar
Hill, Martin T., Oei, Yok-Siang, Smalbrugge, Barry, Zhu, Youcai, de Vries, Tjibbe, van Veldhoven, Peter J., van Otten, Frank W. M., Eijkemans, Tom J., Turkiewicz, Jarosl strokeaw P., de Waardt, Huug, Jan Geluk, Erik, Kwon, Soon-Hong, Lee, Yong-Hee, Nötzell, Richard & Smit, Meint K., Nature Photonics 1, 589594 (2007)Google Scholar