Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T13:02:40.176Z Has data issue: false hasContentIssue false

Study of the sorption and modelling of cesium by a Brazilian bentonite using PHREEQC

Published online by Cambridge University Press:  27 January 2020

Clédola C. O. de Tello*
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, Brazil
Daisy M. M dos Santos
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, Brazil
Thais B. Teixeira
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, Brazil
*
*(Email: tellocc@cdtn.br)
Get access

Abstract

To estimate the cesium sorption by the bentonite and to obtain the isotherms, some batch-adsorption experiments are being carried out, being the Kd (retardation coefficient) calculated from these isotherms. One-dimensional flow cell was constructed to measure the bentonite permeability regarding to a cesium solution, which results will be used to evaluate the diffusion coefficient – D. It will be used the PHREEQC software to model the transport of the cesium radionuclide through this bentonite with the Kd and D data. The modelling of radionuclide transport in the Brazilian materials will contribute to evaluate the efficiency of multi-barriers system of the national repository, because it is one of its safety criteria.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

International Atomic Energy Agency, ‘Scientific and technical basis for the near surface disposal of low and intermediate level waste, IAEA-Technical reports series-412, IAEA, Vienna (2002).Google Scholar
International Atomic Energy Agency, ‘Classification of radioactive waste. General Safety Guide’, IAEA-GSG-1, IAEA, Vienna, (2009).Google Scholar
International Atomic Energy Agency, ‘Selection of Technical Solutions for the Management of Radioactive Waste’, IAEA-TECDOC-1817, IAEA, Vienna (2017).Google Scholar
Ojovan, M.I., Lee, W. E., Introduction to Nuclear Waste Immobilisation (Second Edition), (Elsevier Science Publishers, 2014), pages. 321-335CrossRefGoogle Scholar
Comissão Nacional de Energia Nuclear, ‘Seleção e escolha de locais para depósitos de rejeitos radioativos’, CNEN-NE-6.06, Resolution CNEN 014/89, CNEN, Rio de Janeiro, Brazil (1990).Google Scholar
Comissão Nacional de Energia Nuclear, ‘Critérios de aceitação para deposição de rejeitos radioativos de baixo e médio níveis de radiação’, CNEN-NN-6.09, Resolution CNEN 012/02, CNEN, Rio de Janeiro, Brazil (2002).Google Scholar
Comissão Nacional de Energia Nuclear, ‘Gerência de Rejeitos Radioativos de Baixo e Médio Níveis de Radiação’, CNEN-NN-8.01, Resolution CNEN 167/14, CNEN, Rio de Janeiro, Brazil (2014)Google Scholar
International Atomic Energy Agency, ‘Performance of engineered barrier materials in near surface disposal facilities for radioactive waste’, IAEA-TECDOC-1255, IAEA, Vienna (2001).Google Scholar
Comissão Nacional de Energia Nuclear. ’Licenciamento de Depósitos de Rejeitos Radioativos de Baixo e Médio Níveis de Radiação’, CNEN-NN-8.02, Resolution CNEN 168/14. CNEN, Rio de Janeiro, Brazil, (2014).Google Scholar
Olszewska, W., Miśkiewicz, A.; Zakrzewska-Kołtuniewicz, G.; Lankof, L.; Pająk, L.Multibarrier system preventing migration of radionuclides from radioactive waste repository.” Nukleonika, 60, 3, p. 557-563 (2015).CrossRefGoogle Scholar
Environmental Protection Agency, ‘Understanding Variation in Partition Coefficient, Kd, values, Volume 1, The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes’, EPA 402-R-99-004A, EPA, Washington D.C, United States (1999).Google Scholar
Environmental Protection Agency, ‘Technical Resource Document: Batch-type Procedures for estimating soil adsorption of chemical’, EPA/530 SW-87-006-F, EPA, Washington D.C, United States (1992).Google Scholar
Bohnhoff, G. L.; Shackelford, C.D., “Hydraulic Conductivity of Chemically Modified Bentonites for Containment Barriers.” 7th International Congress on Environmental Geotechnics, At Melbourne, Australia, Nov. 2014.Google Scholar
Svensk Kärnbränslehantering, A.B., ‘Models for Diffusion in Compacted Bentonite’, SKB TR-15-06, SKB, Stockholm (2016).Google Scholar
Departamento Nacional De Produção Mineral (DNPM): Sumário Mineral 2015 (2016). Available at: http://www.dnpm.gov.br/dnpm/sumarios/sumario-mineral-2015/view (accessed 18 September 2019)Google Scholar
Shackelford, C.D. “Laboratory diffusion testing for waste disposal - A review.Journal of Contaminant Hydrology, 7, 3, p. 177-217 (1991).CrossRefGoogle Scholar
Associação Brasileira de Normas Técnicas. ‘Ensaio de Compactação - solo’, ABNT-NBR 7182:1986 Versão Corrigida: 1988, ABNT, Rio de Janeiro, Brazil (1986).Google Scholar
Parkhurst, D. L.; Appelo, C. A. J.‘Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations’, Techniques and Methods 6–A43, Denver, U.S., (2013).Google Scholar