Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T21:48:09.611Z Has data issue: false hasContentIssue false

Surface Analysis of the Tarnishing Layer in Silver Alloys

Published online by Cambridge University Press:  12 December 2017

Janette Ortíz-Corona
Affiliation:
Facultad de Química, Depto. Ingeniería Metalúrgica, Universidad Nacional Autónoma de México, México City, C.P.04510, México.
José L. Ruvalcaba-Sil
Affiliation:
Laboratorio Nacional de Ciencias para la Investigación y Conservación del Patrimonio Cultural LANCIC, Instituto de Física, Universidad Nacional Autónoma de México, México City, C.P.04510, México.
Edgar Casanova-González
Affiliation:
CONACyT - Laboratorio Nacional de Ciencias para la Investigación y Conservación del Patrimonio Cultural LANCIC, Instituto de Física, Universidad Nacional Autónoma de México, México City, C.P.04510, México.
Francisco J. Rodríguez-Gómez*
Affiliation:
Facultad de Química, Depto. Ingeniería Metalúrgica, Universidad Nacional Autónoma de México, México City, C.P.04510, México.
*
*(Email: fxavier@unam.mx)
Get access

Abstract

Ancient silver artifacts, when exposed to environments that contain sulfides (H2S), become tarnished and a black film is formed on the surface. The current study deals with the role of copper content and oxygen in the formation of tarnishing in the silver alloys 0.925, 0.800 and 0.720. An ammonium sulfide solution was used as an accelerator of the tarnishing process for different immersion conditions. The analysis of the tarnishing layer in silver alloys was performed by Raman Spectroscopy, Scanning Electron Microscopy - Energy Dispersive X-ray spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF). The formation of the tarnishing layer was found to be influenced by copper and oxygen contents. The corrosion products under the conditions studied were found to be mainly acanthite and jalpaite.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Costa, V., Reviews in Conservation, 2, 1834 (2001).Google Scholar
Graedel, T.E., J. Electrochem. Soc, 139, 19631970 (1992).Google Scholar
Reale, R., Plattner, S. H., Guida, G., Sammartino, M. P., and Visco, G., Chemistry Central Journal, 6, (Suppl 2): S9 (2012).CrossRefGoogle Scholar
Musílek, L., Cechák, T., and Trojek, T., Applied Radiation and Isotopes, 70, 11931202 (2012).CrossRefGoogle Scholar
Favre-Quattropani, L., Groening, P., Ramseyer, D., and Schlapbach, L., Surf Coat Tech, 125, 377382 (2000).Google Scholar
Degrigny, Christian, Tanguy, Eric, Le Gall, René, Zafiropulos, Vassilis, and Marakis, Giorgos, Journal of Cultural Heritage, 4, 152s156s (2003).CrossRefGoogle Scholar
Caro, T., Caschera, D., Ingo, G. M., and Calandraet, P., J. Raman Spectrosc, 47, 852859 (2016).Google Scholar
Ruvalcaba, J.L., Ramírez, D., Aguilar, V., and Picazo, F., X-ray Spectrometry, 39, 338345 (2010).CrossRefGoogle Scholar
Martina, I., Wiesinger, R., Jembrih-Simbürger, D., and Schreiner, M., e-PS, 9, 18 (2012).Google Scholar
Lee, J.I., Howard, S.M., Kellar, J.J., Cross, W., and Han, K.N., Metall. Mater. Trans., 32 B, 895-901 (2001).Google Scholar
Ingo, G.M., Balbi, S., Caro, T., Fragal, I., Angelini, E., and Bultrini, G., Appl.Phys., A83, 493497 (2006).Google Scholar
Schalm, O., Crabbé, A., Storme, P., Wiesinger, R., Gambirasi, A., Grieten, E., Tack, P., Bauters, S., Kleber, C., Favaro, M., Schryvers, D., Vincze, L., Terryn, H., and Patelli, A., Appl. Phys. A, 122, 903 (2016).Google Scholar
Beck, L., Bosonnet, S., Réveillon, S., Eliot, D., and Pilon, F., NIMB B, 226, 153 (2004).CrossRefGoogle Scholar
Piccinin, S., Stampfi, C., and Scheffier, M., Surf. Sci., 603, 14671475 (2009).Google Scholar