Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T12:43:10.907Z Has data issue: false hasContentIssue false

Synthesis and ion exchange properties of zirconogermanates

Published online by Cambridge University Press:  27 December 2018

Ryan George*
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Joseph A. Hriljac
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Get access

Abstract

Pure and Nb-doped zirconium germanate materials of composition K2-xZr1-xNbxGe3O9.H2O where x = 0, 0.1, 0.2 and 0.25 with the structure of the mineral umbite have been successfully synthesised. The parent material displays negligible ion exchange of K+ for Cs+ but the doped materials shows much improved exchange. Synchrotron X-ray diffraction shows substantial peak splitting which varies with increasing niobium content. Preliminary Rietveld refinements suggest a two phase model with a caesium and potassium rich doped umbite phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dyer, A., Chimedtsogzol, A., Campbell, L. and Williams, C., Micropor. Mesopor. Mat., 95, 172175 (2006)CrossRefGoogle Scholar
Sharma, S.D., Varshney, K.G. and Mojumdar, S.C., J Therm Anal Calorim, 108, 843850 (2012)CrossRefGoogle Scholar
Ferdov, S., Kolitsch, U., Petrov, O., Kostov-Kytin, V., Lengauer, C. and Tillmanns, E., Micropor. Mesopor. Mat., 81, 7986 (2005)CrossRefGoogle Scholar
Pan, F., Lu, X., Wang, Y., Chen, S., Wang, T. and Yan, Y., Micropor. Mesopor. Mat., 184, 134140 (2014)CrossRefGoogle Scholar
Zou, Y., Wang, R., Zhang, Z., Li, G. and Qiu, S., Micropor. Mesopor. Mat., 182, 178184 (2013)CrossRefGoogle Scholar
Poojary, D.M., Bortun, A.I., Burton, L.N. and Clearfield, A., Inorg. Chem, 36, 30723079 (1997)CrossRefGoogle Scholar
Plevert, J., Sanchez-Smith, R., Gentz, T.M., Li, H., Groy, T.L., Yaghi, O.M. and O’Keeffe, M., Inorg. Chem, 42, 59545959 (2003)CrossRefGoogle Scholar
George, R., Hriljac, J.A., MRS Adv., 2, 729734 (2017)CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B., “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR, 86-748 (2000)Google Scholar
Toby, B.H., J. Appl. Cryst., 34, 210213 (2001).CrossRefGoogle Scholar
Fewox, C.S., Clearfield, A. and Celestian, A.J., Inorg. Chem., 50, 35963604 (2011)CrossRefGoogle Scholar