Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T05:40:49.433Z Has data issue: false hasContentIssue false

Synthesis and Properties of Pulsed Electric Current Sintered AlN/Cu Composites

Published online by Cambridge University Press:  02 January 2019

Carlos A. León-Patiño*
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo. Edificio U, Ciudad Universitaria, C.P.58130, Morelia, Mexico.
Deisy Ramirez-Vinasco
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo. Edificio U, Ciudad Universitaria, C.P.58130, Morelia, Mexico.
Ena A. Aguilar-Reyes
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo. Edificio U, Ciudad Universitaria, C.P.58130, Morelia, Mexico.
Makoto Nanko
Affiliation:
Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Niigata940-2188, Japan.
*
*(Email: caleon@umich.mx)
Get access

Abstract

This research shows the development of alternative Cu-based materials for applications where enhanced thermal properties are desired. Cu/AlN composites were fabricated from mixtures of pure Cu and copper plated AlN-Cu composite powders. The ceramic phase was added in amounts of 10, 20 and 30 vol.% and the mixtures sintered by pulsed electric current sintering process (PECS). The results showed that the AlN particles are homogeneously distributed in the copper matrix and that the true contacts between hard particles are reduced because of the deposited copper on their surfaces, improving the connectivity of the matrix phase and bonding at the metal-ceramic interface. The relative density of the Cu/AlN composites was major than 97% in all cases. Thermal conductivity of the composites was high and decreased with the ceramic content from 359 to 194 W/mK, for 10 and 30% AlN, respectively. The coefficient of thermal expansion followed a lineal behavior with temperature and is also reduced with the ceramic content.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuang, K., Kim, F. and Cahill, S.S., “High Thermal Dissipation Ceramics and Composite Materials for Microelectronic Packaging,” RF Microwave Microelectronic Packaging, (Springer, 2010). pp 207232.CrossRefGoogle Scholar
Chmielewski, M. and Weglewski, W., Bull. Polish Acad. Sci. Tech. Sci. 61, 507514 (2013).Google Scholar
Leon, C. A., Rodriguez-Ortiz, G., Nanko, M., and Aguilar, E. A., Powder Technol. 252, 17 (2014).CrossRefGoogle Scholar
Canakci, A. and Varol, T., Powder Technol.268, 7279 (2014).CrossRefGoogle Scholar
Anselmi-tamburini, U., Gennari, S., Garay, J. E. and Munir, Z. A., Mater. Sci. Eng. A. 394, 139148 (2005).CrossRefGoogle Scholar
Pakdel, A., Witecka, A., Rydzek, G., and Awang Shri, D. N., Mater. Des. 119, 225234 (2017).CrossRefGoogle Scholar
Ghasali, E., Pakseresht, A., Rahbari, A., Eslami-Shahed, H., Alizadeh, M., and Ebadzadeh, T., J. Alloys Compd. 666, 366371 (2016).CrossRefGoogle Scholar
Zhang, L., Chen, W., Luo, G., Chen, P., Shen, Q., and Wang, C., J. Alloys Compd. 588, 4952 (2014).CrossRefGoogle Scholar
Chee, C. Y. and Azmi, A., Int. J. Precis. Eng. Manuf. 15, 12151221 (2014).CrossRefGoogle Scholar
Wang, X., Feng, Y., Qian, G., Zhang, J., Zhang, Q., and Ding, F., Surf. Coatings Technol. 240, 261268 (2014).CrossRefGoogle Scholar
Bai, H., Ma, N., Lang, J., Jin, Y., Zhu, C., and Ma, Y., Mater. Des. 46, 740745 (2013).CrossRefGoogle Scholar
Paunovic, M., Mod. Electroplat. 1, 433446 (2010).Google Scholar
Kocjan, A., Dakskobler, A., Krnel, K., and Kosmač, T., J. Eur. Ceram. Soc. 31, 815823 (2011).CrossRefGoogle Scholar
Wang, E., Chen, J., Hu, X., Chou, K. C., and Hou, X., Ceram. Int. 42, 1142911434 (2016).CrossRefGoogle Scholar
Zhang, Y. and Binner, J., J. Mater. Sci. Lett. 21, 803805 (2002).CrossRefGoogle Scholar
Kumar, R. S., Hareesh, U. S., Ramavath, P., and Johnson, R., Ceram. Int. 37, 25832590 (2011).CrossRefGoogle Scholar
Cipolloni, G., Pellizzari, M., Molinari, A., Hebda, M., and Zadra, M., Powder Technol. 275, 5159 (2015).CrossRefGoogle Scholar
Falodun, O. E., Obadele, B.A., Oke, S. R., Ige, O.O., Olubambi, P.A., Lethabane, M.L. and Lethabane, S.W., Trans. Nonferrous Met. Soc. China (English Ed.) 28, 18 (2018).Google Scholar
Ghasali, E., Shirvanimoghaddam, K., and Hossein, A., J. Alloys Compd. 705, 283289 (2017).CrossRefGoogle Scholar
León-Patino, C. A., Rodríguez-Ortiz, G., Aguilar-Reyes, E. A., Nanko, M., and Takeda, M., Mater. Sci. Technol. Conf. Exhib. 2010, MS T’10, 4, 23182326 (2010).Google Scholar
De Faoite, D., Browne, D. J., and Stanton, K. T., J. Mater. Sci. 48, 451461 (2013).CrossRefGoogle Scholar
Svedberg, L. M., Arndt, K. C., and Cima, M. J., J. Am. Ceram. Soc. 83, 4146 (2000).CrossRefGoogle Scholar
Makarian, K., Santhanam, S., and Wing, Z. N., Ceram. Int. 42, 1765917665 (2016).CrossRefGoogle Scholar