Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:37:07.615Z Has data issue: false hasContentIssue false

Synthesis of (poly)gallic acid in a bacterial growth medium

Published online by Cambridge University Press:  16 December 2019

Danilo Vona
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Gabriella Buscemi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy IPCF-CNR Istituto per i processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126, Bari, Italy
Roberta Ragni
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Mariangela Cantore
Affiliation:
IPCF-CNR Istituto per i processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126, Bari, Italy
Stefania R. Cicco
Affiliation:
ICCOM CNR Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche, Via Orabona 4 70126, Bari, Italy
Gianluca M. Farinola
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 70126, Bari Italy
Massimo Trotta*
Affiliation:
IPCF-CNR Istituto per i processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126, Bari, Italy
*
*Corresponding Author: massimo.trotta@cnr.it
Get access

Abstract

Bioelectronics requires versatile, efficient, and low-cost interfaces between the biological entities and the conductive unit. Conductive polymers represent a valid choice to assemble such interfaces able to extract or impinge charges between the biological units and the conductive electronic systems. A drawback in the use of such systems is that the polymerization reaction often takes place in environments whose chemical and physical characteristics clash with the mild conditions required for living biological systems. In the present work, we successfully prove that the conductive polymer poly(gallic acid) can be synthesized in medium designed for bacterial growth, characterised by the presence of several adverse conditions including numerous chemicals, high ionic strength, and almost neutral pH. The gallic acid successfully polymerizes within few hours and with a 40% yield, by exploiting the catalytic activity of the enzyme laccase from the polypore mushroom Trametes versicolor. The resulting polymer is characterised by absorption and Nuclear Magnetic Resonance spectroscopies. The viability of Rhodobacter sphaeroides culture, assessed via the coffee-ring technique, shows an important, but not complete detrimental effect of the gallic acid on the bacterial growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Milano, F., Punzi, A., Ragni, R., Trotta, M. and Farinola, G. M., Adv. Funct. Mater. 29, 1805521 (2019).CrossRefGoogle Scholar
Mouhib, M., Antonucci, A., Reggente, M., Amirjani, A., Gillen, A. J., Boghossian, A. A., Nano Research 12, 2184 (2019).CrossRefGoogle Scholar
Ravi, S.K., Zhang, Y., Wang, Y., Nandakumar, D.K., Sun, W., Jones, M.R., Tan, S.C., Adv. Energy Mater. 9, 1901449 (2019).CrossRefGoogle Scholar
Di Lauro, M., la Gatta, S., Bortolotti, C.A., Beni, V., Parkula, V., Drakopoulou, S., Giordani, M., Berto, M., Milano, F., Cramer, T., Murgia, M., Agostiano, A., Farinola, G. M., Trotta, M. and Biscarini, F., Adv. Electron. Mater. (accepted paper), doi: https://doi.org/10.1002/aelm.201900888 (2019).Google Scholar
Pisignano, D., Persano, L., Cingolani, R., Gigli, G., Babudri, F., Farinola, G. M. and Naso, F., Appl. Phys. Lett. 84, 1365 (2004).CrossRefGoogle Scholar
Operamolla, A., Ragni, R., Omar, H. O., Iacobellis, G., Cardone, A., Babudri, F. and Farinola, G. M., Curr. Org. Synth. 9, 764 (2012).CrossRefGoogle Scholar
Ancora, R., Babudri, F., Farinola, G. M., Naso, F. and Ragni, R., Eur. J. Org. Chem. 24, 4127 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
Ragni, R., Punzi, A., Babudri, F. and Farinola, G. M., Eur. J. Org. Chem. 27-28, 3500 (2018).CrossRefGoogle Scholar
Ambrico, M., Cardone, A., Ligonzo, T., Augelli, V., Ambrico, P. F., Cicco, S., Farinola, G. M., Flannino, M., Perna, G. and Capozzi, V., Org. El. 11, 1809 (2010).CrossRefGoogle Scholar
Ziyatdinova, G., Kozlova, E., Budnikov, H., J. Electroanal. Chem. 821, 73 (2018).CrossRefGoogle Scholar
Pan, J., Yin, D., Mac, L., Zhao, Y., Zhao, J., Guo, L., Letters in Drug Design & Discovery 11, 27(2014).CrossRefGoogle Scholar
López, J., Hernández-Alcantarab, J. M., Roquero, P., Montiela, C., Shirai, K., Gimeno, M., Bárzana, E., J. Mol. Cat. B: Enz. 97, 100 (2013).CrossRefGoogle Scholar
Grattieri, M., Patterson, S., Copeland, J., Klunder, K., Minteer, S. D., Chem Sus Chem 12, 1 (2019).Google Scholar
Grattieri, M., Beaver, K.,Gaffney, E. M. and Minteer, S. D., Faraday Discuss . 215, 15 (2019).CrossRefGoogle Scholar
Davis, A. L., Cai, Y., Davies, A. P., MRC 33, 549 (1995).Google Scholar
Jeon, J.R., Baldrian, P., Murugesan, K., Chang, Y.S., Microb. Biotechnol. 5, 318 (2012).CrossRefGoogle Scholar
Bilici, A., Kaya, T., Yıldırım, M., Dogan, F., J. Mol. Catal. B: Enzym. 64, 89 (2010).CrossRefGoogle Scholar
Losurdo, L., Italiano, F., Trotta, M., Gallerani, R., Luigi, R.C., De Leo, F., J. Basic Microbiol. 50, 302 (2010).CrossRefGoogle Scholar
Giotta, L., Italiano, F., Milano, F., Agostiano, A. and Trotta, M., Chemosphere 62, 1490 (2006).CrossRefGoogle Scholar
Buccolieri, A., Italiano, F., Dell’Atti, A., Buccolieri, G., Giotta, L., Agostiano, A., Milano, F. and Trotta, M., Annali di Chimica 96, 195 (2006).CrossRefGoogle Scholar
Calvano, C. D., Italiano, F., Catucci, L., Agostiano, A., Cataldi, T. R. I., Palmisano, F., Trotta, M., BioMetals 27, 65 (2014).CrossRefGoogle Scholar
Ramalingam, B., Sanab, B., Seayada, J., Ghadessyb, F. J. and Sullivanc, M. B., RSC Adv . 7, 11951 (2017).CrossRefGoogle Scholar
Romero-Montero, A., Gimeno, M., Norberto Farfán, N., Labra-Vázquez, P., J. Mol. Struct. 1197, 326 (2019).CrossRefGoogle Scholar