Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T22:36:36.405Z Has data issue: false hasContentIssue false

Textured perovskite cells

Published online by Cambridge University Press:  05 July 2017

Joop van Deelen*
Affiliation:
Solliance/TNO, High Tech Campus, 21, 5656AE, Eindhoven, The Netherlands.
Y. Tezsevin
Affiliation:
Solliance/TNO, High Tech Campus, 21, 5656AE, Eindhoven, The Netherlands.
M. Barink
Affiliation:
Holst Centre/TNO, High Tech Campus 31, 5656AE, Eindhoven, The Netherlands
Get access

Abstract

Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our optical modeling shows that a significant gain in perovskite (1.55 Ev) absorption from 84.6% to 93.5% for the wavelength range of 400 nm up to 800 nm. The largest gain in absorption is achieved between wavelengths of 700 nm and 800 nm. Because this is a range with a high photon density, the current density increases up to 10rel.%.

We have modeled different sine texture sizes and show generic trends in performance with texture. Moreover, by introducing a texture, the light is locally concentrated, depending on the texture configuration. This offers new cell architectures with optimized front and back contacts.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Snaith, H.J., J. Phys. Chem. Lett. 4, 3623 (2013).CrossRefGoogle Scholar
Li, X., Bi, D., Yi, C., Décoppet, J.-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., Grätzel, M., Science 353, 58 (2016)Google Scholar
Wang, D., Wright, M., Kumar, N., Elumalai, N.K., Uddin, A., Solar Energy Mater. Solar Cells 147, 255 (2016).Google Scholar
Taretto, K., Soldera, M., Koffman-Frischknecht, A, IEEE J. Photovolt. 7 (7756654), 206 (2017).CrossRefGoogle Scholar
Habisreutinger, S.N., McMeekin, D.P., Snaith, H. J., Nicholas Appl, R.J.. Phys. Lett. Mater. 4, 091503 (2016).Google Scholar
Bailie, C.D., McGehee, M.D., MRS Bull. 40, 681 (2015).Google Scholar
Fillipic, M., Löper, P., Niesen, B, De Wolf, S., Krc, J., Ballif, C., Topic, M., Optics Express 23, A263 (2015).Google Scholar
Fu, F., Feurer, T., Jäger, T., Avancini, E., Bissig, B., Yoon, S., Buecheler, S., Tiwari, A.T., Nature Comm. 6, 8932 (2015).Google Scholar
Mailoa, J.P., Bailie, C D., Johlin, E C., Hoke, E.T., Akey, A.J., Ngyuen, W.H., McGehee, M.D., Nuonassisi, T., Appl. Phys. Lett. 106, 121105 (2015).CrossRefGoogle Scholar
Zhang, D., Soppe, W., Schropp, R. E.I., Energy Procedia, 77, 500 (2015).CrossRefGoogle Scholar
Bush, K.A., Bailie, C.D., Chen, Y., Bowing, R., Wang, W., Ma, W., Leijtens, T., Moghadam, F., McGehee, M.D., Adv. Mater. 28, 3937 (2016).Google Scholar
Vermang, B., Wätjen, J.T., Fjällström, V., Rostvalll, F., Edoff, M., Kotipalli, R., Henry, F., Flandre, D., Prog. Photovolt: Res. Appl. 22, 1023 (2014).Google Scholar
Xu, M., Wachters, A.J.H., van Deelen, J., Mourad, M.C.D., Buskens, P.J.P, Optics Express 22, A425 (2014).Google Scholar
van Deelen, J, Omar, A., Barink, M., Materials 10, 392 (2017).CrossRefGoogle Scholar