Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T05:54:42.314Z Has data issue: false hasContentIssue false

Theoretical Modelling of High-Resolution X-Ray Absorption Spectra at Uranium M4 Edge

Published online by Cambridge University Press:  29 May 2018

Jindřich Kolorenč*
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha, Czech Republic
Kristina O. Kvashnina
Affiliation:
Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany Rossendorf Beamline at The European Synchrotron (ESRF), CS40220, 38043 Grenoble Cedex 9, France
*
*(Email: kolorenc@fzu.cz)
Get access

Abstract

We investigate the origin of satellite features that appear in the high-resolution x-ray absorption spectra measured at the uranium M4 edge in compounds where the uranium atoms are in the U6+ oxidation state. We employ a material-specific Anderson impurity model derived from the electronic structure obtained by the density-functional theory.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Raboud, P. A., Dousse, J. Cl., Hoszowska, J., and Savoy, I., Phys. Rev. A 61, 012507 (1999) and references therein.CrossRefGoogle Scholar
McGuire, E. J., Phys. Rev. A 9, 1840 (1974).CrossRefGoogle Scholar
Hämäläinen, K., Siddons, D. P., Hastings, J. B., and Berman, L. E., Phys. Rev. Lett. 67, 2850 (1991).CrossRefGoogle Scholar
de Groot, F. and Kotani, A., Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008) pp. 357363, 393–397.CrossRefGoogle Scholar
Kolorenč, J., Physica B 536, 695 (2018).CrossRefGoogle Scholar
Kvashnina, K. O., Kvashnin, Y. O., and Butorin, S. M., J. Electron. Spectrosc. Relat. Phenom. 194, 27 (2014).CrossRefGoogle Scholar
Vitova, T., Green, J. C., Denning, R. G., Löble, M., Kvashnina, K., Kas, J. J., Jorissen, K., Rehr, J. J., Malcherek, T., and Denecke, M. A., Inorg. Chem. 54, 174 (2015).CrossRefGoogle Scholar
Haverkort, M. W., Zwierzycki, M., and Andersen, O. K., Phys. Rev. B 85, 165113 (2012).CrossRefGoogle Scholar
Hariki, A., Ichinozuka, Y., and Uozumi, T., J. Phys. Soc. Jpn. 82, 023709 (2013).CrossRefGoogle Scholar
Kolorenč, J., Shick, A. B., and Lichtenstein, A. I., Phys. Rev. B 92, 085125 (2015).CrossRefGoogle Scholar
Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., and Luitz, J., WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Austria, 2001).Google Scholar
Kuneš, J., Arita, R., Wissgott, P., Toschi, A., Ikeda, H., and Held, K., Comput. Phys. Commun. 181, 1888 (2010).CrossRefGoogle Scholar
Mostofi, A. A., Yates, J. R., Lee, Y.-S., Souza, I., Vanderbilt, D., and Marzari, N., Comput. Phys. Commun. 178, 685 (2008).CrossRefGoogle Scholar
Vitova, T., Pidchenko, I., Fellhauer, D., Bagus, P. S., Joly, Y., Pruessmann, T., Bahl, S., Gonzalez-Robles, E., Rothe, J., Altmaier, M., Denecke, M. A., and Geckeis, H., Nature Communications 8, 16053 (2017).CrossRefGoogle Scholar
Kvashnina, K. O., Butorin, S. M., Martin, P., and Glatzel, P., Phys. Rev. Lett. 111, 253002 (2013).CrossRefGoogle Scholar
Petiau, J., Calas, G., Petitmaire, D., Bianconi, A., Benfatto, M., and Marcelli, A., Phys. Rev. B 34, 7350 (1986).CrossRefGoogle Scholar
Butorin, S. M., J. Electron. Spectrosc. Relat. Phenom. 110–111, 213 (2000).CrossRefGoogle Scholar