Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T04:08:39.560Z Has data issue: false hasContentIssue false

Thermal Stability of Materials for Thin-Film Electrochemical Cells Investigated by Thin-Film Calorimetry

Published online by Cambridge University Press:  26 January 2016

Hendrik Wulfmeier*
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 B, Goslar, 38640, Germany.
Alexander Omelcenko
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 B, Goslar, 38640, Germany.
Daniel Albrecht
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 B, Goslar, 38640, Germany.
Detlef Klimm
Affiliation:
Leibniz Institute for Crystal Growth, Max-Born-Str. 2, Berlin, 12489, Germany.
Wassima El Mofid
Affiliation:
Electrochemistry and Electroplating Group, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 6 (Arrheniusbau), Ilmenau, 97693, Germany.
Marc Strafela
Affiliation:
Institute of Applied Materials (IAM-AWP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
Sven Ulrich
Affiliation:
Institute of Applied Materials (IAM-AWP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
Andreas Bund
Affiliation:
Electrochemistry and Electroplating Group, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 6 (Arrheniusbau), Ilmenau, 97693, Germany.
Holger Fritze
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 B, Goslar, 38640, Germany.
Get access

Abstract

Phase transformation enthalpies are determined using the recently developed measurement technique Thin-Film Calorimetry (TFC), which is based on piezoelectric resonators vibrating in thickness shear mode. They are applicable up to at least 1000 °C. To the best of our knowledge, no comparable TFC systems for such high temperatures exist.

The experimental part is divided into two subsections. The first is addressed to a thermodynamic investigation on piezoelectric langasite crystals (LGS, La3Ga5SiO14) which are the key component of the TFC system. The specific heat capacity is measured on LGS crystals of three different manufacturers. It ranges from about 0.45 J g-1 K-1 at 40 °C to about 0.60 J g-1 K-1 at 1000 °C. Thereby, deviations of up to 5 % between the different crystals are detected. Thermal diffusivity data for Y-cut LGS crystals are determined as well. Here, a constant decrease with temperature is detected ranging from 0.48 mm2 s-1 at room temperature to 0.38 mm2 s-1 at 700 °C.

The second part presents thin-film calorimetric investigation on thin films of the family Li-Ni-Mn-Co-Al-Oxide (NMC/NMCA). These cathode materials are investigated and compared when annealed in ambient air or 0.5 % H2/Ar up to 860 °C. Three stoichiometries are chosen: Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, and Li(Ni0.6Mn0.2Co0.15Al0.05)O2. The samples show three or four phase transformations. In air, the samples crystallize in the range of 250-350 °C. In 0.5 % H2/Ar, the transformations occur at higher temperatures. Especially in air, stoichiometric NMC crystallizes at lower temperatures compared to Ni-rich compositions. Additional doping with Al enhances the thermal stability which shifts all phase transformations to higher temperatures in both atmospheres.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xiao, K., Gregoire, J.M., McCluskey, P.J., and Vlassak, J.J., Rev. Sci. Instrum. 83, 114901, (2012).CrossRefGoogle Scholar
Lopeandía, A.F., León-Gutierrez, E., Rodríguez-Viejo, J., Muñoz, F.J., Microelectron. Eng. 84, 12881291, (2007).CrossRefGoogle Scholar
Lee, D., Sim, G., Zhao, K., and Vlassak, J.J., Nano Lett. 15, 82668270, (2015).CrossRefGoogle Scholar
Wulfmeier, H., Albrecht, D., Fischer, J., Ivanov, S., Bund, A., Ulrich, S., and Fritze, H., J. Electrochem. Soc. 162 (4), A727A736, (2015).CrossRefGoogle Scholar
Wulfmeier, H., Albrecht, D., Ivanov, S., Fischer, J., Ulrich, S., Bund, A., and Fritze, H., J. Mat. Sci. 48, 65856596, (2013).CrossRefGoogle Scholar
Wulfmeier, H., Albrecht, D., Ivanov, S., Bund, A., and Fritze, H., Proceedings 11. Dresdner Sensor-Symposium, 3439 (2013).CrossRefGoogle Scholar
Robert, R., Villevieille, C., and Novak, P., J. Mater. Chem. A 2, 85898598, (2014).CrossRefGoogle Scholar
Noh, H.-J., Youn, S., Yoon, C., and Sun, Y.-K., J. Power Sources 233, 121130, (2013).CrossRefGoogle Scholar
Croguennec, L., Bains, J., Bréger, J., Tessier, C., Biensan, P., Levasseur, S., and Delmas, C., J. Electrochem. Soc. 158 (6), A664A670, (2011).CrossRefGoogle Scholar
German Industrial Norm DIN 51007.Google Scholar
El Mofid, W., Ivanov, S., Konkin, A., and Bund, A., J. Power Sources 268, 414422, (2014).CrossRefGoogle Scholar
European Standard EN 10027–2.Google Scholar
Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Thermochim. Acta 497, 713, (2013).CrossRefGoogle Scholar
FactSage, Thermfact and GTT Technologies.Google Scholar
Kugaenko, O.M., Uvarova, S.S., Krylov, S.A., Senatulin, B.R., Petrakov, V.S., Busanov, O.A., Egorov, V.N., and Sakharov, S.A., Bulletin of the RAS. Physics 76, 12581263 (2012).Google Scholar
Kong, H., Wang, J., Zhang, H., Yin, X., Zhang, S, Liu, Y., Cheng, X., Gao, L., Hu, X., and Jiang, M., J. Cryst. Growth 254, 360367, (2003).CrossRefGoogle Scholar
Wang, Z., Yuan, D., Pan, L., Cheng, X., Lv, Y., Wang, X., Guo, S., Duan, X., Wang, J., Xu, D., and Lv, M., Appl. Phys. A 77, 683685, (2003).CrossRefGoogle Scholar
Suhak, Y., Schulz, M., Wulfmeier, H., Johnson, W., Sotnikov, A., Schmidt, H., Ganschow, S., Klimm, D., and Fritze, H., MRS Advances 2015 (submitted).Google Scholar
Zhang, X., Mauger, A., Lu, Q., Groult, H., Perrigaud, L., Gendron, F., and Julien, C.M., Electrochimica Acta 55, 64406449, (2010).CrossRefGoogle Scholar
Wang, H., Jang, Y.-I., Huang, B., Sadoway, D.R., and Chiang, Y.-M., J. Electrochem. Soc. 146 (2), 473480, (1999).CrossRefGoogle Scholar
Shannon, R.D., Acta Cryst. A32, 751767, (1976).CrossRefGoogle Scholar
Fu, C., Li, G., Luo, D., Li, Q., Fan, J., and Li, L., ACS Appl. Mater. Interfaces 6, 1582215831, (2014).CrossRefGoogle Scholar
Lee, K.-S., Myung, S.-T., Amine, K., Yashiro, H., and Sun, Y.-K., J. Electrochem. Soc. 154 (10), A971A977, (2007).CrossRefGoogle Scholar