Published online by Cambridge University Press: 02 May 2016
Thermoelectric properties of segmented nanowires and nanobelts are studied by means of the Kubo-Greenwood formula and a real-space renormalization plus convolution method. The tight-binding and Born models are respectively used for the calculation of electronic and lattice thermal conductivities. In particular, we investigate the thermoelectric figure of merit (ZT) of periodic and quasiperiodically segmented nanowires with two different cross sections, where the segments of the quasiperiodic one are ordered following the Fibonacci sequence. The results show an increase of ZT when the cross section area of nanowires diminishes. In addition, we present results of ZT in segmented nanobelts with an inhomogeneous cross section. For both nanowires and nanobelts, the quasiperiodicity seems to be an important enhancing factor of ZT.