Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T17:40:19.331Z Has data issue: false hasContentIssue false

VHF Plasma CVD Synthesis of Photochromic ZnO Nanoparticle

Published online by Cambridge University Press:  01 February 2019

Hiroshi Kajiyama*
Affiliation:
Tokushima Bunri University, Sanuki, 769-2193, Japan
Shin Kuboyama
Affiliation:
Kyushu University, Kasuga, 816-8580, Japan
Atsushi Otomo
Affiliation:
Hiroshima University, Higashi-hiroshima, 739-8524, Japan
Hiroki Uyama
Affiliation:
Tokushima Bunri University, Sanuki, 769-2193, Japan
Toshihiro Matsuura
Affiliation:
Tokushima Bunri University, Sanuki, 769-2193, Japan
Shuhei Inoue
Affiliation:
Hiroshima University, Higashi-hiroshima, 739-8524, Japan
Yukihiko Matsumura
Affiliation:
Hiroshima University, Higashi-hiroshima, 739-8524, Japan
Keiji Takata
Affiliation:
Kansai University, Suita, 564-8680, Japan
Kentaro Tomita
Affiliation:
Kyushu University, Kasuga, 816-8580, Japan
Kiichiro Uchino
Affiliation:
Kyushu University, Kasuga, 816-8580, Japan
Get access

Abstract

Photochromic (PC) ZnO nanoparticles are synthesized for the first time by using a VHF plasma enhanced CVD apparatus. The prepared ZnO film changes from transparent to PC state under UV irradiation; on being subjected to heat treatment, it changes back to transparent state. There is a threshold temperature for attaining the PC phase. The Debye-Waller factor of Zn atoms is specifically large for the PC ZnO. The ZnO nanoparticles contain carbon as impurity. The effects of C-O bonds on the ZnO crystal structure and density of states (DOS) are simulated based on density-functional theory. The results reveal that the crystal structure is slightly distorted and a sufficient DOS for PC light absorption is formed in the band gap.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhen-hua, Li, Ying-yi, Li, Zhong, Dan, Xu, Xin, Li-Yong-xiu, , J. Lumin., 128, 1758 (2008).CrossRefGoogle Scholar
Lee, Kian Mun, Lai, Chin Wei, Ngai, Koh Sing, Juan, Joon Ching, Water Res., 88, 428 (2016).CrossRefGoogle Scholar
Smijs, Threes G and Pavel, Stanislav, Nanotechnol. Sci. Appl., 4, 95 (2011).CrossRefGoogle Scholar
Yamada, Takahiro, Makino, Hisao, Yamamoto, Naoki and Yamamoto, Tetsuya, J. Appl. Phys. 107, 123534-1 (2010).CrossRefGoogle Scholar
Yamamoto, Naoki, Makino, Hisao, Osone, Satoshi, Ujihara, A., Ito, Takahiro, Hokari, Hitoshi., Takashi Maruyama and Tetsuya Yamamoto, Thin Solid Films, 520, 4131 (2012).CrossRefGoogle Scholar
Yamamoto, Tetsuya, Nomoto, Junichi, Kitami, Hisashi, Sakami, Toshiyuki, Makino, Hisao, Kobayashi, Keisuke, Aoki, Yasushi, Kishimoto, Seiichi, J. Vac. Soc. Japan, 60, 292 (2017).CrossRefGoogle Scholar
Inoue, Shuhei, Kawamoto, Takahiro, Matsumura, Yukihiko, Tomita, Kentaro, Uchino, Kiichiro, Takata, Keiji, Kajiyama, Hiroshi, AIP Adv., 6, 055214-1 (2016).CrossRefGoogle Scholar
Lee, Ik-Jae, Park, Jooyoung, Sung, Nark-Eon, Kim, Jaeyong, Mater. Chem. Phys., 206, 103 (2018).CrossRefGoogle Scholar
Cem, Gümüş, Ozkendir, Osman Murat, Hamide Kavak, Y. Ufuktepe, J. Optoelect. Adv. Mater., 8, 299 (2006).Google Scholar
Tagami, Katsunori, Koga, Junichiro, Nohara, Yoshiro, Usami, Mamoru, Jpn. J. Appl. Phys. 56, 058004 (2017).CrossRefGoogle Scholar
Jin, Yanhong, Hu, Yihua, Fu, Yinronh, Mu, Zhongfei, Ju, Guifang, Mater. Lett., 134, 187 (2014).CrossRefGoogle Scholar
Uda, Tsuyoshi, private commun.Google Scholar