Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T12:59:52.633Z Has data issue: false hasContentIssue false

Volume analysis of supercooled water under high pressure

Published online by Cambridge University Press:  07 May 2018

Solomon F. Duki*
Affiliation:
National Center for Biotechnology Information, National Library of Medicine and National Institute of Health, Bethesda MD, 20894 USA
Mesfin Tsige
Affiliation:
Department of Polymer Science, The University of Akron, Akron OH, 44325 USA
*
Get access

Abstract

Motivated by an experimental finding on the density of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from 40 K to 380 K using two different cooling rates, 10 K/ns and 10 K/5 ns. For the heating simulations we used the slowest heating rate (10 K/5 ns) by applying the same range of isobars. Our analysis of the variation of the volume of the bulk water sample with temperature at different pressures from both isobaric cooling/heating and isothermal compression cycles indicates a concave-downward curvature at high pressures that is consistent with the experiment for emulsified water. In particular, a strong concave down curvature is observed between the temperatures 180 K and 220 K. Below the glass transition temperature, which is around 180 K at 1GPa, the volume turns to concave upward curvature. No crystallization of the supercooled liquid state was observed below 180 K even after running the system for an additional microsecond.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Debenedetti, P. G., Phys, J.. Condens. Matter 15, R1669 (2003).CrossRefGoogle Scholar
Angell, C. A., in Water and Aqueous Solutions at Subzero Temperatures, Water: A Comprehensive Treatise Vol. 7, edited by Franks, F. (Plenum (1982), New York), Chap. 1, pp. 181.Google Scholar
Angell, C. A., Ann. Rev. Phys. Chem. 34, 593 (1983).CrossRefGoogle Scholar
Sato, H., Watanabe, K., Levelt Sengers, J. M. H., Gallagher, J. S., Hill, P. G., Straub, J., and Wagner, W., J. Phys. Chem. 20, 1023 (1991).Google Scholar
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E., Nature (London) 360, 324 (1992).CrossRefGoogle Scholar
Sastry, S., Debenedetti, P. G., Sciortino, F., and Stanley, H. E., Phys. Rev. E 53, 6144 (1996).CrossRefGoogle Scholar
Mishima, O., Chem, J.. Phys. 133, 144503 (2010).Google Scholar
Abascal, J. L. F. and Vega, C., J. Chem. Phys. 134, 186101 (2011).CrossRefGoogle Scholar
Plimpton, S. J., Comput, J.. Phys. 117, 1 (1995).Google Scholar
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
Harrington, S., Poole, P. H., Sciortino, F., and Stanley, H. E., J. Chem. Phys. 107, 7443 (1997).CrossRefGoogle Scholar
Giovambattista, N., Eugene Stanley, H., and Sciortino, F., Phys. Rev. Lett. 94, 107803 (2005).CrossRefGoogle Scholar
Giovambattista, N., Eugene Stanley, H., and Sciortino, F., Phys. Rev. E 72, 031510 (2005).Google Scholar
Giovambattista, N., Angell, C. A., Sciortino, F., and Eugene Stanley, H., Phys. Rev. Lett. 93, 047801 (2004).CrossRefGoogle Scholar
Abascal, J. L. F. and Vega, C., J. Chem. Phys. 123, 234505 (2005).CrossRefGoogle Scholar
Abascal, J. L. F. and Vega, C., J. Chem. Phys. 133, 234502 (2010).CrossRefGoogle Scholar
Swope, W. C. et.al, J. Chem. Phys. 76, 637 (1982).CrossRefGoogle Scholar
Hockney, R. and Eastwood, J., Simulation using Particles Adam Hilger, New York, NY (1988).CrossRefGoogle Scholar
Nosé, S., Chem Phys, J.. 81, 511 (1984).Google Scholar
Hoover, W. G., Phys. Rev. A, 31, 1695 (1985).CrossRefGoogle Scholar
Jehser, M., Seidl, M., Rauer, C., and Loerting, T., J. Chem. Phys. 140, 134504 (2014).CrossRefGoogle Scholar
Giovambattista, N., Loerting, T., Lukanov, B. R., and Starr, F. W., Scientific Reports, 2, 390 (2012).CrossRefGoogle Scholar
Tse, John S. and Klein, Michael L., Phys. Rev. Lett. 58, 1672 (1987).CrossRefGoogle Scholar
Martonak, R., Donadio, D., and Parrinello, M., Phys. Rev. Lett. 92, 225702 (2004).CrossRefGoogle Scholar
Martonak, R., Donadio, D., and Parrinello, M., J. Chem Phys. 122, 134501 (2005).CrossRefGoogle Scholar
Loerting, T. and Giovambattista, N., J. Phys.: Condens. Matter 18, R919 (2006).Google Scholar