Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T22:04:19.970Z Has data issue: false hasContentIssue false

ZnO-CuO core-shell heterostructure for improving the efficiency of ZnO-based dye-sensitized solar cells

Published online by Cambridge University Press:  07 March 2017

Kichang Jung*
Affiliation:
Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, U.S.A Southern California Research Initiative for Solar Energy, University of California, Riverside, California 92507, U.S.A
Taehoon Lim
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, California, 92507, U.S.A Southern California Research Initiative for Solar Energy, University of California, Riverside, California 92507, U.S.A
Yaqiong Li
Affiliation:
Southern California Research Initiative for Solar Energy, University of California, Riverside, California 92507, U.S.A
Alfredo A. Martinez-Morales
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, California, 92507, U.S.A Southern California Research Initiative for Solar Energy, University of California, Riverside, California 92507, U.S.A
*
*(Email: kjung003@ucr.edu)
Get access

Abstract

In this work, the integration of ZnO-CuO core-shell nanostructures shows improvement in the conversion efficiency of ZnO-based dye-sensitized solar cells (DSSCs). This is due to CuO acting as a secondary absorption layer that allows the absorption of near-infrared (NIR) light increasing the generated photocurrent in the device, and as a blocking layer that reduces electron-hole recombination. The ZnO core and encapsulating CuO shell are synthesized through chemical vapor deposition (CVD), and thermal oxidation of a Cu seed layer, respectively. The crystallinity of the synthesized ZnO and CuO is analyzed by X-ray diffraction (XRD). Scanning electron microscope (SEM) images show the change in morphology through the steps of Cu seed layer deposition and thermal oxidation of this layer. To determine optical properties of CuO on ZnO nanorods, UV-Vis-NIR photospectrocopy is used. The comparison of conversion efficiency of DSSCs using two different photoelectrodes (i.e. ZnO nanorods versus ZnO-CuO core-shell nanostructure) is performed by I-V measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffert, Martin I., Caldeira, Ken, Jain, Atul K., Haites, Erik F., Danny Harveyk, L. D., Potter, Seth D., Schlesinger, Michael E., Schneider, Stephen H., Watts, Robert G., Wigley, Tom M. L., and Wuebbles, Donald J., Nature, 395, 881884 (1998)Google Scholar
Blanco, J., Malato, S., Fernández-Ibañez, P., Alarcón, D., Gernjak, W., and Maldonado, M.I., Renew. Sust. Energ. Rev., 13, 14371445 (2009)CrossRefGoogle Scholar
Wrigh, Matthew, and Uddin, Ashraf, Sol. Energ. Mat. Sol. C., 107, 87111 (2012)CrossRefGoogle Scholar
Zhang, Shufang, Yang, Xudong, Numata, Youhei, and Han, Liyuan, Energy Environ. Sci., 6, 14431464 (2013)Google Scholar
Han, Liyaun, Islam, Ashraful, Chen, Han, Malapaka, Chandrasekharam, Chiranjeevi, Barreddi, Zhang, Shufang, Yang, Xudong, and Yanagida, Masatoshi, Energy Environ, Sci., 5, 60576060 (2012)Google Scholar
Carp, Oana, Tirsoaga, Alina, Jurca, Bogdan, Ene, Ramona, Somacescu, Simona, and Ianculescu, Adelina, Carbohyd. Polym., 115, 285293 (2015)Google Scholar
Cao, H., Xu, J. Y., Zhang, D. Z., Chang, S.-H., Ho, S. T., Seelig, E. W., Liu, X., and Chang, R. P. H., Phys. Rev. Lett., 84, 55845587 (2000)Google Scholar
Wu, Dangxin, Zhang, Qiming and Tao, Meng, Phys. Rev. B, 73, 235206 (2006)Google Scholar
Grältzel, Michael, Inorg. Chem., 44, 68416851 (2005)CrossRefGoogle Scholar
Woodhouse, Michael and Parkinson, B. A., Chem. Soc. Rev., 38, 197210 (2009)Google Scholar
Wilson, Samantha S., Bosco, Jeffrey P., Tolstova, Yulia, Scanlon, David O., Watson, Graeme W. and Atwater, Harry A., Energy Environ. Sci., 7, 36063610 (2014)Google Scholar
Raksa, Phathaitep, Nilphai, Sanpet, Gardchareon, Atcharawon, Choopun, Supab, Thin Solid Films, 517, 47414744 (2009)Google Scholar
Sahay, R., Sundaramurthy, J., SureshKumar, P., Thavasi, V., Mhaisalkar, S.G., Ramakrishna, S., J. Solid State Chem., 186, 261267 (2012)Google Scholar