Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T10:43:38.716Z Has data issue: false hasContentIssue false

Characterization of Mechanical and Thermal Properties Using Ultrafast Optical Metrology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Ultrafast lasers have long been used to study the dynamics of fast optical, electronic, and chemical processes in materials. These tools can also be used in a variety of optical pump and probe spectroscopies to generate and detect acoustic signals with frequencies on the order of 100 GHz, and to generate and detect thermal waves with penetration depths on the scale of nanometers. The short wavelengths of these probes make them ideal for the study of the mechanical and thermal properties of thin films, their interfaces, and nanostructures. We describe the picosecond-laser acoustics technique and demonstrate how it can be used to extract the elastic constants and the adhesion of thin films and probe the normal modes of vibration of nanostructures. The thermal properties of thin films are also accessible through time-domain thermoreflectance. Since the mechanical and thermal properties can be obtained quickly on micrometer-scale regions of a sample, spatial mapping of the properties is also possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nye, J.Physical Properties of Crystals (Oxford University Press, Oxford, 1967).Google Scholar
2Nelson, K.A. and Fayer, M.D.J. Chem. Phys. 72 (1980) p. 5202.CrossRefGoogle Scholar
3Thomsen, C.Strait, J.Vardeny, Z.Maris, H.J. and Tauc, J.Phys. Rev. Lett. 53 (1984) p. 989.CrossRefGoogle Scholar
4Grahn, H.T.Maris, H.J. and Tauc, J.IEEE J. Quantum Elect. 25 (1989) p. 2562.CrossRefGoogle Scholar
5Thomsen, C.Grahn, H.T.Maris, H.J. and Tauc, J.Phys. Rev. B 34 (1986) p. 4129.CrossRefGoogle Scholar
6Hao, H.-Y. and Maris, H.J.Phys. Rev. B 63 224301 (2001).CrossRefGoogle Scholar
7Allen, P.A.Phys. Rev. Lett. 59 (1987) p. 1460.CrossRefGoogle Scholar
8Corkum, P.B.Brunel, F.Sherman, N.K. and Srinivasan-Rao, T., Phys. Rev. Lett. 61 (1988) p. 2886.CrossRefGoogle Scholar
9Tas, G. and Maris, H.J.Phys. Rev. B 49 (1994) p. 15046.CrossRefGoogle Scholar
10Yariv, A. and Yeh, P.Optical Waves in Crystals (Wiley, New York, 1984).Google Scholar
11Thomsen, C.Grahn, H.T.Maris, H.J. and Tauc, J.Opt. Commun. 60 (1986) p. 55.CrossRefGoogle Scholar
12Lin, H.-N.Stoner, R.J.Maris, H.J. and Tauc, J.J. Appl. Phys. 69 (1991) p. 3816.CrossRefGoogle Scholar
13Wright, O.B.J. Appl. Phys. 71 (1992) p. 1617.CrossRefGoogle Scholar
14Grill, A. and Patel, V.J. Appl. Phys. 85 (1999) p. 3314.CrossRefGoogle Scholar
15Grill, A.J. Appl. Phys. 93 (2003) p. 1785.CrossRefGoogle Scholar
16Maex, K.Baklanov, M.R.Shamiryan, D.Lacopi, F.Brongersma, S.H. and Yanovitskaya, Z.S.J. Appl. Phys. 93 (2003) p. 8793.CrossRefGoogle Scholar
17Nix, W.D.Metall. Trans. A 20A (1989) p. 2217.CrossRefGoogle Scholar
18Lin, H.-N., Stoner, R.J.Maris, H.J.Harper, J.M.E.Cabral, C. Jr, Halbout, J.-M. and Rubloff, G.W.Appl. Phys. Lett. 61 (1992) p. 2700.CrossRefGoogle Scholar
19Antonelli, G.A.Maris, H.J.Malhotra, S.G. and Harper, J.M.E.J. Appl. Phys. 91 (2002) p. 3261.CrossRefGoogle Scholar
20Antonelli, G.A.Zannitto, P. and Maris, H.J.Physica B 316 (2002) p. 377.CrossRefGoogle Scholar
21Hartland, G.V.Hu, M.Wilson, O.Mulvaney, P. and Sader, J.E.J. Phys. Chem. B 106 (2002) p. 743.CrossRefGoogle Scholar
22Hodak, J.H.Henglein, A. and Hartland, G.V.J. Chem. Phys. 111 (1999) p. 8613.CrossRefGoogle Scholar
23Shen, Y.-L.J. Vac. Sci. Technol. B 17 (1999) p. 2115.CrossRefGoogle Scholar
24Yi, H.J.Diaz, J.Eliashevich, I.Stanton, M.Erdtmann, M.He, X.Wang, L.J. and Razeghi, M.Appl. Phys. Lett. 66 (1995) p. 253.CrossRefGoogle Scholar
25Menzel, U.Barwolff, A.Enders, P.Ackermann, D.Puchert, R. and Voss, M.Semicond. Sci. Technol. 10 (1995) p. 1382.CrossRefGoogle Scholar
26Kuball, M.Hayes, J.M.Uren, M.J.Martin, I.Birbeck, J.C.H.Balmer, R.S.Hughes, B.T.IEEE Electron. Dev. Lett. 23 (2002) p. 7.CrossRefGoogle Scholar
27Hicks, L.D.Harman, T.C. and Dresselhaus, M.S.Appl. Phys. Lett. 63 (1993) p. 3231.CrossRefGoogle Scholar
28Lin-Chung, P.J. and Reinecke, T.L.Phys. Rev. B 51 (1995) p. 13244.CrossRefGoogle Scholar
29Daly, B.C.Maris, H.J.Ford, W.K.Antonelli, G.A.Wong, L. and Andideh, E.J. Appl. Phys. 92 (2004) p. 3820.CrossRefGoogle Scholar
30Costescu, R.M.Bullen, A.J.Matamis, G.O'Hara, K.E., and Cahill, D.G.Phys. Rev. B 65 094205 (2002).CrossRefGoogle Scholar
31Capinski, W.S.Maris, H.J.Ruf, T.Cardona, M.Ploog, K. and Katzer, D.S.Phys. Rev. B 59 (1999) p. 8105.CrossRefGoogle Scholar
32Daly, B.C.Maris, H.J.Imamura, K. and Tamura, S.Phys. Rev. B 66 024301 (2002).CrossRefGoogle Scholar
33Andersson, P. and Bäckström, G., Rev. Sci. Instrum. 47 (1976) p. 205.CrossRefGoogle Scholar
34Gustafsson, S.E. and Karawacki, E.Rev. Sci. Instrum. 54 (1983) p. 744.CrossRefGoogle Scholar
35Cahill, D.G.Rev. Sci. Instrum. 61 (1990) p. 802.CrossRefGoogle Scholar
36Eesley, G.L.Phys. Rev. Lett. 51 (1983) p. 2140.CrossRefGoogle Scholar
37Eesley, G.L.Phys. Rev. B 33 (1986) p. 2144.CrossRefGoogle Scholar
38Capinski, W. and Maris, H.J.Rev. Sci. Instrum. 67 (1996) p. 2720.CrossRefGoogle Scholar
39Cotescu, R.M.Wall, M.A. and Cahill, D.G.Phys. Rev. B 67 054302 (2003).CrossRefGoogle Scholar
40Cahill, D.G.Rev. Sci. Instrum. 75 (2004) p. 5119.CrossRefGoogle Scholar
41Lee, S.M.Cahill, D.G. and Venkatasubramanian, R.Appl. Phys. Lett. 70 (1997) p. 2957.CrossRefGoogle Scholar
42Tamura, S.Tanaka, Y. and Maris, H.J.Phys. Rev. B 60 (1999) p. 2627.CrossRefGoogle Scholar
43Simkin, M.V. and Mahan, G.D.Phys. Rev. Lett. 84 (2000) p. 927.CrossRefGoogle Scholar
44Chen, G.Phys. Rev. B 57 (1998) p. 14958.CrossRefGoogle Scholar
45Daly, B.C.Maris, H.J.Nurmikko, A.V.Kuball, M. and Han, J.J. Appl Phys. 92 (2002) p. 3820.CrossRefGoogle Scholar
46Capinski, W.Maris, H.J. and Tamura, S.Phys. Rev. B 59 (1999) p. 10105.CrossRefGoogle Scholar
47Cahill, D.G. and Watanabe, F.Phys. Rev. B 70 235322 (2004).CrossRefGoogle Scholar
48Costescu, R.M.Cahill, D.G.Fabreguette, F.H.Sechrist, Z.A. and George, S.M.Science 303 (2004) p. 989.CrossRefGoogle Scholar
49Young, D.A. and Maris, H.J.Phys. Rev. B 40 (1989) p. 3685.CrossRefGoogle Scholar
50Stoner, R.J. and Maris, H.J.Phys. Rev. B 48 (1993) p. 16373.CrossRefGoogle Scholar
51Stevens, R.J.Smith, A.N. and Norris, P.M.J. Heat Transfer 127 (2005) p. 315.CrossRefGoogle Scholar
52Tas, G.Loomis, J.J.Maris, H.J.Bailes, A.A. III, and Seiberling, L.E.Appl. Phys. Lett. 72 (1998) p. 2235.CrossRefGoogle Scholar
53Cahill, D.G.Rev. Sci. Instrum. 75 (2004) p. 5119.CrossRefGoogle Scholar
54Huxtable, S.Cahill, D.G.Fauconnier, V.White, J.O. and Zhao, J.-C.Nature Mater. 3 (2004) p. 298.CrossRefGoogle Scholar