Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:43:55.918Z Has data issue: false hasContentIssue false

Circular dichroism: A powerful tool for studying biomineralization promoter proteins

Published online by Cambridge University Press:  03 June 2015

Melika Sarem
Affiliation:
Institute for Macromolecular Chemistry, University of Freiburg; Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany; Bioss, Centre for Biological Signalling Studies, University of Freiburg, Germany; melika.sarem@makro.uni-freiburg.de
Steffen Lüdeke
Affiliation:
Institute of Pharmaceutical Sciences, The University of Freiburg, Germany; steffen.luedeke@pharmazie.uni-freiburg.de
Get access

Abstract

Biomineralization is the matrix-directed calcification of tissue in living organisms. The deposition of different polymorphs of calcium phosphate or calcium carbonate is a highly regulated process. It may involve cell-controlled mechanisms with vesicular delivery of inorganic material to the extracellular matrix and cell-independent processes mediated by dedicated matrix proteins. These proteins promote the formation of microscopic crystals of defined size and shape, which combine to form bio-inorganic materials with unique properties. Successful biomineralization is correlated with structural elements, such as matrix proteins involved in the nucleation process. Circular dichroism (CD) is a spectroscopic technique for the determination of a secondary structure of proteins and has therefore been applied for studying numerous biomineralization promoter proteins. This article reviews and compares CD data on matrix proteins from different contexts, such as eggs, seashells, and teeth. It highlights the potential of CD for secondary structure determination and quantification and points out pitfalls that may lead to misinterpretation of CD spectra. The data suggest that most biomineralization promoter proteins contain domains of different secondary structure with predominantly unordered conformation. However, they may acquire a higher degree of order initiated by environmental factors such as pH, presence of cations, or charged surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N.D., McComb, D.W., Porter, A.E., Stevens, M.M., Proc. Natl. Acad. Sci. U.S.A. 109, 14170 (2012).CrossRefGoogle Scholar
Addadi, L., Weiner, S., Angew. Chem. Int. Ed. 31, 153 (1992).CrossRefGoogle Scholar
George, A., Veis, A., Chem. Rev. 108, 4670 (2008).CrossRefGoogle Scholar
Kröger, N., Lorenz, S., Brunner, E., Sumper, M., Science 298, 584 (2002).CrossRefGoogle Scholar
Lakshminarayanan, R., Kini, R.M., Valiyaveettil, S., Proc. Natl. Acad. Sci. U.S.A. 99, 5155 (2002).CrossRefGoogle Scholar
Stetler-Stevenson, W.G., Veis, A., Calcif. Tissue Int. 40, 97 (1987).CrossRefGoogle Scholar
Moradian-Oldak, J., Matrix Biol. 20, 293 (2001).CrossRefGoogle Scholar
Cheng, P.N., Pham, J.D., Nowick, J.S., J. Am. Chem. Soc. 135, 5477 (2013).CrossRefGoogle Scholar
Woody, R.W., in Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley-VCH, New York, 2012), vol. 2, p. 475.Google Scholar
Johnson, W.C., Tinoco, I., J. Am. Chem. Soc. 94, 4389 (1972).CrossRefGoogle Scholar
Brahms, S., Brahms, J., J. Mol. Biol. 138, 149 (1980).CrossRefGoogle Scholar
Townend, R., Kumosinski, T.F., Timasheff, S.N., Fasman, G.D., Davidson, B., Biochem. Biophys. Res. Commun. 23, 163 (1966).CrossRefGoogle Scholar
Greenfield, N., Fasman, G.D., Biochemistry 8, 4108 (1969).CrossRefGoogle Scholar
Bonora, G.M., Toniolo, C., Biopolymers 13, 1067 (1974).CrossRefGoogle Scholar
Timasheff, S.N., Townend, R., Mescanti, L., J. Biol. Chem. 241, 1863 (1966).CrossRefGoogle Scholar
Sreerama, N., Woody, R.W., Protein Sci. 12, 384 (2003).CrossRefGoogle Scholar
Woody, R.W., Monatsh. Chem. 136, 347 (2005).CrossRefGoogle Scholar
Toniolo, C., Formaggio, F., Woody, R.W., in Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley, Hoboken, 2012), vol. 2, p. 499.CrossRefGoogle Scholar
Sutherland, J.C.,Comprehensive Chiroptical Spectroscopy, Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds. (Wiley, Hoboken, New Jersey, 2012), vol. 1, p. 37.Google Scholar
Johnson, W.C., Annu. Rev. Biophys. Bio. 17, 145 (1988).CrossRefGoogle Scholar
Greenfield, N.J., Nat. Protoc. 1, 2876 (2006).CrossRefGoogle Scholar
Bulheller, B.M., Hirst, J.D., Bioinformatics 25, 539 (2009).CrossRefGoogle Scholar
Urry, D.W., Krivacic, J., Proc. Natl. Acad. Sci. U.S.A. 65, 845 (1970).CrossRefGoogle Scholar
Moffitt, W., Moscowitz, A., J. Chem. Phys. 30, 648 (1959).CrossRefGoogle Scholar
Mecham, D.K., Olcott, H.S., J. Am. Chem. Soc. 71, 3670 (1949).CrossRefGoogle Scholar
Anton, M., Nau, F., Nys, Y., Worlds Poult. Sci. J. 62, 429 (2006).CrossRefGoogle Scholar
Zhang, X., Geng, F., Huang, X., Ma, M., J. Cryst. Growth 409, 44 (2015).CrossRefGoogle Scholar
Onuma, K., J. Phys. Chem. B 109, 8257 (2005).CrossRefGoogle Scholar
Znidarsic, W.J., Chen, I.W., Shastri, V.P., J. Mater. Chem. 22, 19562 (2012).CrossRefGoogle Scholar
Moran, E.T., Poult. Sci. 86, 1043 (2007).CrossRefGoogle Scholar
Hincke, M.T., Tsang, C.P.W., Courtney, M., Hill, V., Narbaitz, R., Calcif. Tissue Int. 56, 578 (1995).CrossRefGoogle Scholar
Allerton, S.E., Perlmann, G.E., J. Biol. Chem. 240, 3892 (1965).CrossRefGoogle Scholar
Giancotti, V., Quadrifoglio, F., Crescenzi, V., Eur. J. Biochem. 35, 78 (1973).CrossRefGoogle Scholar
Taborsky, G., J. Biol. Chem. 243, 6014 (1968).CrossRefGoogle Scholar
Timasheff, S.N., Townend, R., Perlmann, G.E., J. Biol. Chem. 242, 2290 (1967).CrossRefGoogle Scholar
Rabanal, F., Ludevid, M.D., Pons, M., Giralt, E., Biopolymers 33, 1019 (1993).CrossRefGoogle Scholar
Wilhelm, P., Lewandowski, B., Trapp, N., Wennemers, H., J. Am. Chem. Soc. 136, 15829 (2014).CrossRefGoogle Scholar
Tiffany, M.L., Krimm, S., Biopolymers 6, 1379 (1968).CrossRefGoogle Scholar
Shi, Z.S., Woody, R.W., Kallenbach, N.R., Adv. Protein Chem. 62, 163 (2002).CrossRefGoogle Scholar
Blout, E.R., Idelson, M., J. Am. Chem. Soc. 78, 497 (1956).CrossRefGoogle Scholar
Grizzuti, K., Perlmann, G.E., J. Biol. Chem. 245, 2573 (1970).CrossRefGoogle Scholar
Taborsky, G., Biochemistry 2, 266 (1963).CrossRefGoogle Scholar
Grizzuti, K., Perlmann, G.E., Biochemistry 12, 4399 (1973).CrossRefGoogle Scholar
Lakshminarayanan, R., Joseph, J.S., Kini, R.M., Valiyaveettil, S., Biomacromolecules 6, 741 (2005).CrossRefGoogle Scholar
Reyes-Grajeda, J.P., Jáuregui-Zúñiga, D., Rodríguez-Romero, A., Hernández-Santoyo, A., Bolanos-Garcia, V.M., Moreno, A., Protein Pept. Lett. 9, 253 (2002).CrossRefGoogle Scholar
Lide, D.R. Ed., CRC Handbook of Chemistry and Physics, 85th ed. (CRC Press, Boca Raton, 2004).Google Scholar
Perlmann, G.E., Grizzuti, K., Biochemistry 10, 4168 (1971).CrossRefGoogle Scholar
Falini, G., Albeck, S., Weiner, S., Addadi, L., Science 271, 67 (1996).CrossRefGoogle Scholar
Raz, S., Weiner, S., Addadi, L., Adv. Mater. 12, 38 (2000).3.0.CO;2-I>CrossRefGoogle Scholar
Weiner, S., Biochemistry 22, 4139 (1983).CrossRefGoogle Scholar
Greenfield, E.M., Wilson, D.C., Crenshaw, M.A., Am. Zool. 24, 925 (1984).CrossRefGoogle Scholar
Halloran, B.A., Donachy, J.E., Comp. Biochem. Physiol. B: Comp. Biochem. 111, 221 (1995).CrossRefGoogle Scholar
Hattan, S.J., Laue, T.M., Chasteen, N.D., J. Biol. Chem. 276, 4461 (2001).CrossRefGoogle Scholar
Pan, C., Fang, D., Xu, G.R., Liang, J., Zhang, G.Y., Wang, H.Z., Xie, L.P., Zhang, R.Q., J. Biol. Chem. 289, 2776 (2014).CrossRefGoogle Scholar
Wustman, B.A., Morse, D.E., Evans, J.S., Langmuir 18, 9901 (2002).CrossRefGoogle Scholar
Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C., Wustman, B.A., Taranto, L., Evans, J.S., Morsel, D.E., Biopolymers 70, 522 (2003).CrossRefGoogle Scholar
Hosseini, S., Naderi-Manesh, H., Mountassif, D., Cerruti, M., Vali, H., Faghihi, S., J. Biol. Chem. 288, 7885 (2013).CrossRefGoogle Scholar
Amos, F.F., Ndao, M., Evans, J.S., Biomacromolecules 10, 3298 (2009).CrossRefGoogle Scholar
Ajikumar, P.K., Lakshminarayanan, R., Ong, B.T., Valiyaveettil, S., Kini, R.M., Biomacromolecules 4, 1321 (2003).CrossRefGoogle Scholar
Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., Akera, S., FEBS Lett. 462, 225 (1999).CrossRefGoogle Scholar
Kim, I.W., DiMasi, E., Evans, J.S., Cryst. Growth Des. 4, 1113 (2004).CrossRefGoogle Scholar
Fincham, A.G., Moradian-Oldak, J., Simmer, J.P., J. Struct. Biol. 126, 270 (1999).CrossRefGoogle Scholar
Gibson, C.W., Yuan, Z.A., Hall, B., Longenecker, G., Chen, E.H., Thyagarajan, T., Sreenath, T., Wright, J.T., Decker, S., Piddington, R., Harrison, G., Kulkarni, A.B., J. Biol. Chem. 276, 31871 (2001).CrossRefGoogle Scholar
Lakshminarayanan, R., Yoon, I., Hegde, B.G., Fan, D.M., Du, C., Moradian-Oldak, J., Proteins 76, 560 (2009).CrossRefGoogle Scholar
Shi, Z.S., Olson, C.A., Rose, G.D., Baldwin, R.L., Kallenbach, N.R., Proc. Natl. Acad. Sci. U.S.A. 99, 9190 (2002).CrossRefGoogle Scholar
Makowska, J., Rodziewicz-Motowidlo, S., Baginska, K., Vila, J.A., Liwo, A., Chmurzynski, L., Scheraga, H.A., Proc. Natl. Acad. Sci. U.S.A. 103, 1744 (2006).CrossRefGoogle Scholar
Chen, C.L., Bromley, K.M., Moradian-Oldak, J., De Yoreo, J.J., J. Am. Chem. Soc. 133, 17406 (2011).CrossRefGoogle Scholar
Lokappa, S.B., Chandrababu, K.B., Dutta, K., Perovic, I., Evans, J.S., Moradian-Oldak, J., Biopolymers 103, 96 (2015).CrossRefGoogle Scholar
Chandrababu, K.B., Dutta, K., Lokappa, S.B., Ndao, M., Evans, J.S., Moradian-Oldak, J., Biopolymers 101, 525 (2014).CrossRefGoogle Scholar
Otzen, D., Biochim. Biophys. Acta 1814, 562 (2011).CrossRefGoogle Scholar
George, A., Sabsay, B., Simonian, P.A.L., Veis, A., J. Biol. Chem. 268, 12624 (1993).CrossRefGoogle Scholar
George, A., Silberstein, R., Veis, A., Connect. Tissue Res. 32, 389 (1995).Google Scholar
He, G., Dahl, T., Veis, A., George, A., Nat. Mater. 2, 552 (2003).CrossRefGoogle Scholar
Hao, J.J., Narayanan, K., Muni, T., Ramachandran, A., George, A., J. Biol. Chem. 282, 15357 (2007).CrossRefGoogle Scholar
Kalmar, L., Homola, D., Varga, G., Tompa, P., Bone 51, 528 (2012).CrossRefGoogle Scholar