Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T08:58:02.617Z Has data issue: false hasContentIssue false

High-efficiency tandem perovskite solar cells

Published online by Cambridge University Press:  07 August 2015

Colin D. Bailie
Affiliation:
Materials Science and Engineering Department, Stanford University, USA; cdbailie@stanford.edu
Michael D. McGehee
Affiliation:
Materials Science and Engineering Department, Stanford University, USA; mmcgehee@stanford.edu
Get access

Abstract

A method to cost-effectively upgrade the performance of an established small-bandgap solar technology is to deposit a large-bandgap polycrystalline semiconductor on top to make a tandem solar cell. Metal-halide perovskites have recently been demonstrated as large-bandgap semiconductors that perform well even as a defective and polycrystalline material. We review the initial experimental and modeling work performed on these tandems. We also discuss in-depth the challenges of perovskite-based tandems and the innovations needed from the solar research community to propel perovskite-based tandems into the high-efficiency (>25%) regime and reach commercial competitiveness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).CrossRefGoogle Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G., Sci. Rep. 2, 1 (2012).Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Prog. Photovolt. Res. Appl. 23, 1 (2015).CrossRefGoogle Scholar
Bett, A.W., Dimroth, F., Stollwerck, G., Sulima, O.V., Appl. Phys. A 69, 119 (1999).Google Scholar
National Renewable Energy Laboratory, NREL Efficiency Chart Rev. 12–08–2014; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.Google Scholar
Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., McGehee, M.D., Energy Environ. Sci. 8, 956 (2015).CrossRefGoogle Scholar
Löper, P., Moon, S.-J., Martín de Nicolas, S., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J.-H., De Wolf, S., Ballif, C., Phys. Chem. Chem. Phys. 17, 1619 (2015).CrossRefGoogle Scholar
Mailoa, J.P., Bailie, C.D., Johlin, E.C., Hoke, E.T., Akey, A.J., Nguyen, W.H., McGehee, M.D., Buonassisi, T., Appl. Phys. Lett. 106, 121105 (2015).Google Scholar
Todorov, T., Gershon, T., Gunawan, O., Sturdevant, C., Guha, S., Appl. Phys. Lett. 105, 173902 (2014).CrossRefGoogle Scholar
Ameri, T., Dennler, G., Lungenschmied, C., Brabec, C.J., Energy Environ. Sci. 2, 347 (2009).Google Scholar
Bauhuis, G.J., Mulder, P., Shermer, J.J., Prog. Photovolt. Res. Appl. 22, 656 (2014).Google Scholar
Uzu, H., Ichikawa, M., Hino, M., Nakano, K., Meguro, T., Hernández, J.L., Kim, H.-S., Park, N.-G., Yamamoto, K., Appl. Phys. Lett. 106, 013506 (2015).CrossRefGoogle Scholar
Lal, N.N., White, T.P., Catchpole, K.R., IEEE J. Photovolt. 4, 1380 (2014).CrossRefGoogle Scholar
Loper, P., Niesen, B., Moon, S.-J., Martin de Nicolas, S., Holovsky, J., Remes, Z., Ledinsky, M., Haug, F.-J., Yum, J.-H., De Wolf, S., Ballif, C., IEEE J. Photovolt. 4, 1545 (2014).Google Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499, 316 (2013).Google Scholar
Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M.M., Graetzel, M., Nazeeruddin, M.K., Bolink, H.J., Nat. Photonics 8, 128 (2014).Google Scholar
Nguyen, W.H., Bailie, C.D., Unger, E.L., McGehee, M.D., J. Am. Chem. Soc. 136, 10996 (2014).CrossRefGoogle Scholar
Schueppel, R., Timmreck, R., Allinger, N., Mueller, T., Furno, M., Uhrich, C., Leo, K., Riede, M., J. Appl. Phys. 107, 044503 (2010).Google Scholar
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J., Science 347, 967 (2015).CrossRefGoogle Scholar
Löper, P., Stuckelberger, M., Niesen, B., Werner, J., Filipič, M., Moon, S.-J., Yum, J.-H., Topič, M., De Wolf, S., Ballif, C., J. Phys. Chem. Lett. 6, 66 (2014).CrossRefGoogle Scholar
Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., Kahn, A., Adv. Mater. 24, 5408 (2012).Google Scholar
Demaurex, B., De Wolf, S., Descoeudres, A., Holman, Z.C., Ballif, C., Appl. Phys. Lett. 101, 171604 (2012).CrossRefGoogle Scholar
Wu, W.-F., Chiou, B., Appl. Surf. Sci. 68, 497 (1993).CrossRefGoogle Scholar
Joshi, R.N., Singh, V.P., McClure, J.C., Thin Solid Films 257, 32 (1995).Google Scholar
Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Il Seok, S., Nano Lett. 13, 1764 (2013).CrossRefGoogle Scholar
Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., McGehee, M.D., Chem. Sci. 6, 613 (2014).Google Scholar