Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T02:11:53.724Z Has data issue: false hasContentIssue false

Atomic-Scale Simulation in Materials Science

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Realistic simulation of the atomic-scale properties of complex systems has long been a goal of scientists interested in the behavior of condensed matter. Until recently, the role of atomistic simulation techniques has been to address rather idealized problems in statistical mechanics. Treatment of more realistic materials has been uncommon not because suitable approaches toward simulating such materials were unknown, but rather because the computer power available was inadequate. Recently, major advances have occurred in the complexity of systems subject to atomistic simulation, primarily due to a dramatic increase in availability of computer power. These new capabilities have driven the development of atomic-scale descriptions of real materials accurate enough for atomistic simulation of a wide range of specific materials science problems.

In this section, we will outline several of the techniques used to simulate the microscopic behavior of an atomistic system. The first method introduced for atomistic simulation was the molecular dynamics technique, in which Newton's equations of motion for the individual atoms are integrated numerically for given interatomic and external forces. One of the first uses of this technique was the study, by Fermi, Pasta, and Ulam, of randomization of vibrational energy in a one-dimensional chain of atoms. Although the results of this initial application were to some extent unsatisfactory, the molecular dynamics technique has since been applied to a wide range of problems in the statistical mechanics of condensed media.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Monte Carlo Methods in Statistical Physics, edited by Binder, K. (Springer-Verlag, New York, 1979); Statistical Mechanics - Part B, edited by B.J. Berne (Plenum, New York, 1977).CrossRefGoogle Scholar
2.Car, R. and Parrinello, M., Phys. Rev. Lett. 55 (1985) p. 2471.CrossRefGoogle Scholar
3.Fermi, E., Pasta, J.R., and Ulam, S.M., in Collected Works of Enrico Fermi, Vol. 2, (University of Chicago Press, Chicago, 1965) p. 978.Google Scholar
4.Hoover, W.G., Molecular Dynamics (Springer-Verlag, New York, 1986).Google Scholar
5.Valleau, J.P., in Statistical Mechanics - Part A, edited by Berne, B.J. (Plenum, New York, 1977).Google Scholar
6.Keating, P.N., Phys. Rev. 145 (1966) p. 637.CrossRefGoogle Scholar
7.Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31 (1985) p. 5262.CrossRefGoogle Scholar
8.Pearson, E., Takai, T., Halicioglu, T., and Tiller, W.A., J. Cryst. Growth 70 (1984) p. 33; D.W. Brenner and B.J. Garrison, Phys. Rev. B 34 (1986) p. 1304.CrossRefGoogle Scholar
9.Biswas, R. and Hamman, D.R., Phys. Rev. Lett. 55 (1985) p. 2001.CrossRefGoogle Scholar
10.Tersoff, J., Phys. Rev. Lett. 56 (1986) p. 632.CrossRefGoogle Scholar
11.Dodson, B.W., Phys. Rev. B 35 (1987) p. 2795.CrossRefGoogle Scholar
12.Lee, J.K., Interatomic Potentials and Crystalline Defects (TMS-AIME, Warrendale, PA, 1981).Google Scholar
13.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29 (1984) p. 6443.CrossRefGoogle Scholar
14.Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33 (1986) p. 7983.CrossRefGoogle Scholar
15.Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J., Phys. Rev. B 29 (1984) p. 2963.CrossRefGoogle Scholar
16.Broughton, J.Q. and Li, X.P., Phys. Rev. B 35 (1987) p. 9120.CrossRefGoogle Scholar
17.Landman, U., Luedtke, W.D., Barnett, R.N., Cleveland, C.L., Ribarsky, M.W., Arnold, E., Ramesh, S., Baumgart, H., Martinez, A., and Kahn, B., Phys. Rev. Lett. 56 (1986) p. 155.CrossRefGoogle Scholar
18.Abraham, F.F. and Broughton, J.Q., Phys. Rev. Lett. 56 (1986) p. 734.CrossRefGoogle Scholar
19.Kluge, M.D., Ray, J.R., and Rahman, A. (preprint).Google Scholar
20.Tsao, J.Y., Aziz, M.J., Thompson, M.O., and Peercy, P.S., Phys. Rev. Lett. 56 (1986) p. 2712.CrossRefGoogle Scholar
21.Frank, F.C. and van der Merwe, J.H., (Proc. Roy. Soc., Ser. A 198 (1949) p. 216.Google Scholar
22.Dodson, B.W. and Taylor, P.A., Appl. Phys. Lett. 49 (1986) p. 642.CrossRefGoogle Scholar
23.Grabow, M.H. and Gilmer, G.H., in Initia Stages of Epitaxial Growth, edited by Hull, R., Gibson, J.M., and Smith, D.A. (Mater. Res. Soc. Symp. Proc, 94, Pittsburgh, PA 1987) p. 15.Google Scholar
24.Dodson, B.W., Phys. Rev. B 35 (1987) p. 5558.CrossRefGoogle Scholar
25.Schneider, M., Schuller, I.K., and Rahman, A., Phys. Rev. B 36 (1987) p. 1340.CrossRefGoogle Scholar
26.Gawlinski, E.T. and Gunton, J.D., Phys. Rev. B 36 (1987) p. 4774.CrossRefGoogle Scholar
27.Taylor, P.A. and Dodson, B.W., Phys. Rev. B 36 (1987) p. 1355.CrossRefGoogle Scholar
28.Appleton, B.R., Zuhr, R.A., Noggle, T.S., Herbots, N., and Pennycook, S.J., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Symp. Proc., 74, Pittsburgh, PA, 1987) p. 45.Google Scholar
29.Ehrlich, G., in Chemistry and Physics of Solid Surfaces V, edited by Vanselow, R. and Howe, R. (Springer-Verlag, New York, 1984).Google Scholar
30.Dodson, B.W., Phys. Rev. B 36 (1987) p. 1068.CrossRefGoogle Scholar
31.Chan, C.M. and van Hove, M.A., Surf. Sci. 171 (1986) p. 226.CrossRefGoogle Scholar
32.Tománek, D., Brocksch, H-J., and Bennemann, K.H., Surf. Sci. 138 (1983) p. L129; H-J. Brocksch and K.H. Bennemann, Surf. Sci. 161 (1985) p. 321.CrossRefGoogle Scholar
33.Daw, M.S. and Foiles, S.M., J. Vac. Sci. Technol. A4 (1986) p. 1412; M. S. Daw, Surf. Sci. Lett. 166 (1986) p. L161.CrossRefGoogle Scholar
34.Foiles, S.M., Surf. Sci. 191 (1987) p. L779.CrossRefGoogle Scholar
35.Wolf, H., Jagodzinski, H., and Moritz, W., Surf. Sci. 77 (1978) p. 265.CrossRefGoogle Scholar
36.Campuzano, J.C., Foster, M.S., Jennings, G., Willis, R.F., and Unertl, W., Phys. Rev. Lett. 54 (1985) p. 2684; J. C. Campuzano, G. Jennings, and R.F. Willis, Surf. Sci. 162 (1985) p. 484.CrossRefGoogle Scholar
37.Salmerón, M. and Somorjai, G., Surf. Sci. 91 (1980) p. 373.CrossRefGoogle Scholar
38.Daw, M.S. and Foiles, S.M., Phys. Rev. Lett. (in press).Google Scholar
39.Bartelt, N.C., Einstein, T.L., and Roelofs, L.D., Phys. Rev. B 32 (1985) p. 2993.CrossRefGoogle Scholar
40.Wang, Z.Q., Li, Y.S., Lok, C.K.C., Quinn, J., Jona, F., and Marcus, P.M., Solid State Comm. 62 (1987) p. 181.CrossRefGoogle Scholar
41.Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33 (1986) p. 7983.CrossRefGoogle Scholar
42.Foiles, S.M., Surf. Sci. (in press).Google Scholar
43.Foiles, S.M., Phys. Rev. B 32 (1985) p. 7685.CrossRefGoogle Scholar
44.Foiles, S.M., J. Vac. Sci. Technol. A5 (1987) p. 889.CrossRefGoogle Scholar
45.Daw, M.S., Baskes, M.I., Bisson, C.L., and Wolfer, W.G., Modeling Environmental Effects on Crack Growth Processes, edited by Jones, R.H. and Gerberich, W.W. (TMS-AIME, New York, 1986) p. 99.Google Scholar
46.Daw, M.S. and Baskes, M.I., in Proceedings of NATO Advanced Study Institute (Bad Reichenhall, West Germany, June, 1986), edited by Latanision, R.A. and Jones, R.H. (Martinus Nijhoff, Boston, 1987).Google Scholar
47.Hirth, J.P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968).Google Scholar
48.Foiles, S.M., High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O., (Mater. Res. Soc. Symp. Proc, 81, Pittsburgh, PA, 1987) p. 51.Google Scholar
49.Chen, S.P., Voter, A.F., and Srolovitz, D.J., Scripta Met. 20 (1986) p. 1389.CrossRefGoogle Scholar