Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T22:45:09.410Z Has data issue: false hasContentIssue false

Bioinspired multiscale surfaces with special wettability

Published online by Cambridge University Press:  15 May 2013

Mingjie Liu
Affiliation:
The Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China; liumj@iccas.ac.cn
Shutao Wang
Affiliation:
The Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China; stwang@iccas.ac.cn
Lei Jiang
Affiliation:
The Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China, jianglei@iccas.ac.cn
Get access

Abstract

Bioinspired surfaces with special wettability have rapidly emerged at the forefront of materials research. What is behind biological surfaces with special wettability, and how can we realize special wettability properties for artificial materials? This article describes how the interplay between unique multiscale (micro- and nanoscale) structures of biological surfaces and intrinsic material properties plays a crucial role in achieving the desired wettability and functionalities. Taking inspiration from natural surfaces, researchers have designed and created novel interfacial materials with versatile special wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), smart switchable surfaces, and water collecting surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jiang, L., Feng, L., Eds., Bioinspired Intelligent Nanostructured Interfacial Materials (World Scientific Publishing, China, 2010).CrossRefGoogle Scholar
Liu, M.J., Zheng, Y.M., Zhai, J., Jiang, L., Acc. Chem. Res. 43, 368 (2010).CrossRefGoogle Scholar
Sun, T.L., Feng, L., Gao, X.F., Jiang, L., Acc. Chem. Res. 38, 644 (2005).CrossRefGoogle Scholar
Blossey, R., Nat. Mater. 2, 301 (2003).CrossRefGoogle Scholar
Gao, X.F., Jiang, L., Nature 432, 36 (2004).CrossRefGoogle Scholar
Zheng, Y.M., Gao, X.F., Jiang, L., Soft Matter 3, 178 (2007).CrossRefGoogle Scholar
Gao, X.F., Yan, X., Yao, X., Xu, L., Zhang, K., Zhang, J.H., Yang, B., Jiang, L., Adv. Mater. 19, 2213 (2007).CrossRefGoogle Scholar
Lee, W., Jin, M.K., Yoo, W.C., Lee, J.K., Langmuir 20, 7665 (2004).CrossRefGoogle ScholarPubMed
Parker, A.R., Lawrence, C.R., Nature 414, 33 (2001).CrossRefGoogle Scholar
Zheng, Y.M., Bai, H., Huang, Z.B., Tian, X.L., Nie, F.Q., Zhao, Y., Zhai, J., Jiang, L., Nature 463, 640 (2010).CrossRefGoogle Scholar
Ju, J., Bai, H., Zheng, Y.M., Zhao, T., Fang, R., Jiang, L., Nat. Commun. 3, 1247 (2012).CrossRefGoogle Scholar
Liu, M.J., Wang, S.T., Wei, Z.X., Song, Y.L., Jiang, L., Adv. Mater. 21, 665 (2009).CrossRefGoogle Scholar
Xia, F., Jiang, L., Adv. Mater. 20, 2842 (2008).CrossRefGoogle Scholar
Feng, L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y.L., Liu, B.Q., Jiang, L., Zhu, D.B., Adv. Mater. 14, 1857 (2002).CrossRefGoogle Scholar
Feng, X.J., Jiang, L., Adv. Mater. 18, 3063 (2006).CrossRefGoogle Scholar
Liu, M.J., Jiang, L., Adv. Funct. Mater. 20, 3753 (2010).CrossRefGoogle Scholar
Barthlott, W., Neinhuis, C., Planta 202, 1 (1997).CrossRefGoogle Scholar
Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J., Nature 405, 681 (2000).CrossRefGoogle Scholar
Feng, L., Zhang, Y.A., Xi, J.M., Zhu, Y., Wang, N., Xia, F., Jiang, L., Langmuir 24, 4114 (2008).CrossRefGoogle Scholar
Hu, D.L., Chan, B., Bush, J.W.M., Nature 424, 663 (2003).CrossRefGoogle Scholar
Ball, P., Nature 400, 507 (1999).CrossRefGoogle Scholar
Liu, X.L., Zhou, J., Xue, Z.X., Gao, J., Meng, J.X., Wang, S.T., Jiang, L., Adv. Mater. 24, 3401 (2012).CrossRefGoogle Scholar
Jung, Y.C., Bhushan, B., Langmuir 25, 14165 (2009).CrossRefGoogle Scholar
Chen, P.P., Chen, L., Han, D., Zhai, J., Zheng, Y.M., Jiang, L., Small 5, 908 (2009).CrossRefGoogle ScholarPubMed
Zheng, Y.M., Han, D., Zhai, J., Jiang, L., Appl. Phys. Lett. 92, 084106 (2008).CrossRefGoogle Scholar
Lum, K., Chandler, D., Weeks, J.D., J. Phys. Chem. B 103, 4570 (1999).CrossRefGoogle Scholar
Yao, X., Chen, Q.W., Xu, L., Li, Q.K., Song, Y.L., Gao, X.F., Quere, D., Jiang, L., Adv. Funct. Mater. 20, 656 (2010).CrossRefGoogle Scholar
Lai, Y.K., Gao, X.F., Zhuang, H.F., Lin, C.J., Jiang, L., Adv. Mater. 21, 3799 (2009).CrossRefGoogle Scholar
Liu, M.J., Xue, Z.X., Liu, H., Jiang, L., Angew. Chem. Int. Ed. 51, 8348 (2012).CrossRefGoogle Scholar
Jiang, L., Zhao, Y., Zhai, J., Angew. Chem. Int. Ed. 43, 4338 (2004).CrossRefGoogle Scholar
Li, H.J., Wang, X.B., Song, Y.L., Liu, Y.Q., Li, Q.S., Jiang, L., Zhu, D.B., Angew. Chem. Int. Ed. 40, 1743 (2001).3.0.CO;2-#>CrossRefGoogle Scholar
Xie, Q.D., Xu, J., Feng, L., Jiang, L., Tang, W.H., Luo, X.D., Han, C.C., Adv. Mater. 16, 302 (2004).CrossRefGoogle Scholar
Ichimura, K., Oh, S.K., Nakagawa, M., Science 288, 1624 (2000).CrossRefGoogle Scholar
Sun, T.L., Wang, G.J., Feng, L., Liu, B.Q., Ma, Y.M., Jiang, L., Zhu, D.B., Angew. Chem. Int. Ed. 43, 357 (2004).CrossRefGoogle Scholar
Liu, M.J., Liu, X.L., Ding, C.M., Wei, Z.X., Zhu, Y., Jiang, L., Soft Matter 7, 4163 (2011).CrossRefGoogle Scholar
Li, C., Guo, R.W., Jiang, X., Hu, S.X., Li, L., Cao, X.Y., Yang, H., Song, Y.L., Ma, Y.M., Jiang, L., Adv. Mater. 21, 4254 (2009).CrossRefGoogle Scholar
Feng, X.J., Feng, L., Jin, M.H., Zhai, J., Jiang, L., Zhu, D.B., J. Am. Chem. Soc. 126, 62 (2004).CrossRefGoogle Scholar
Xia, F., Feng, L., Wang, S.T., Sun, T.L., Song, W.L., Jiang, W.H., Jiang, L., Adv. Mater. 18, 432 (2006).CrossRefGoogle Scholar
Liu, M.J., Nie, F.Q., Wei, Z.X., Song, Y.L., Jiang, L., Langmuir 26, 3993 (2010).CrossRefGoogle Scholar
Tsujii, K., Yamamoto, T., Onda, T., Shibuichi, S., Angew. Chem. Int. Ed. 36, 1011 (1997).CrossRefGoogle Scholar
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J., Nature 477, 443 (2011).CrossRefGoogle Scholar
Bohn, H.F., Federle, W., Proc. Natl. Acad. Sci. USA 101, 14138 (2004).CrossRefGoogle Scholar
Lafuma, A., Quéré, D., Europhys. Lett. 96, 56001 (2011).CrossRefGoogle Scholar
Bai, H., Ju, J., Zheng, Y.M., Jiang, L., Adv. Mater. 24, 2786 (2012).CrossRefGoogle Scholar
Bai, H., Tian, X.L., Zheng, Y.M., Ju, J., Zhao, Y., Jiang, L., Adv. Mater. 22, 5521 (2010).CrossRefGoogle Scholar
Bai, H., Ju, J., Sun, R.Z., Chen, Y., Zheng, Y.M., Jiang, L., Adv. Mater. 23, 3708 (2011).CrossRefGoogle Scholar
Tian, X.L., Chen, Y., Zheng, Y.M., Bai, H., Jiang, L., Adv. Mater. 23, 5486 (2011).CrossRefGoogle Scholar
Bai, H., Sun, R., Ju, J., Yao, X., Zheng, Y.M., Jiang, L., Small 7, 3429 (2011).CrossRefGoogle Scholar
Martin, C.R., Siwy, Z.S., Science 317, 331 (2007).CrossRefGoogle Scholar
Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X.H., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A., Nat. Biotechnol. 26, 1146 (2008).CrossRefGoogle Scholar
Wen, L.P., Hou, X., Tian, Y., Nie, F.Q., Song, Y.L., Zhai, J., Jiang, L., Adv. Mater. 22, 1021 (2010).CrossRefGoogle Scholar
Hou, X., Jiang, L., ACS Nano 3, 3339 (2009).CrossRefGoogle Scholar
Wang, S.T., Liu, H.J., Liu, D.S., Ma, X.Y., Fang, X.H., Jiang, L., Angew. Chem. Int. Ed. 46, 3915 (2007).CrossRefGoogle Scholar
Xia, F., Guo, W., Mao, Y.D., Hou, X., Xue, J.M., Xia, H.W., Wang, L., Song, Y.L., Ji, H., Qi, O.Y., Wang, Y.G., Jiang, L., J. Am. Chem. Soc. 130, 8345 (2008).CrossRefGoogle Scholar
Hou, X., Guo, W., Xia, F., Nie, F.Q., Dong, H., Tian, Y., Wen, L.P., Wang, L., Cao, L.X., Yang, Y., Xue, J.M., Song, Y.L., Wang, Y.G., Liu, D.S., Jiang, L., J. Am. Chem. Soc. 131, 7800 (2009).CrossRefGoogle Scholar
Jasti, J., Furukawa, H., Gonzales, E. B., Gouaus, E., Nature 449 316 (2007).CrossRefGoogle Scholar