Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T05:40:46.848Z Has data issue: false hasContentIssue false

Building Materials by Packing Spheres

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

An effective way to build ordered materials with micrometer- or submicrometer-sized features is to pack together monodisperse (equal-sized) colloidal particles. But most monodisperse particles in this size range are spheres, and thus one problem in building new micrometer-scale ordered materials is controlling how spheres pack. In this article, we discuss how this problem can be approached by constructing and studying packings in the few-sphere limit. Confinement of particles within containers such as micropatterned holes or spherical droplets can lead to some unexpected and diverse types of polyhedra that may become building blocks for more complex materials. The packing processes that form these polyhedra may also be a source of disorder in dense bulk suspensions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alder, B.J. and Wainwright, T.E., J. Chem. Phys. 27 (1957) p. 1208.CrossRefGoogle Scholar
2. Pusey, P.N. and Megen, W. van, Nature 320 (1986) p. 340.CrossRefGoogle Scholar
3. Wijnhoven, J.E.G.J. and Vos, W.L., Science 281 (1998) p. 802.CrossRefGoogle Scholar
4. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., and Driel, H.M. van, Nature 405 (2000) p. 437.CrossRefGoogle Scholar
5. Vlasov, Y.A., Bo, X.Z., Sturm, J.C., and Norris, D.J., Nature 414 (2001) p. 289.CrossRefGoogle Scholar
6. Stein, A., Microporous Mesoporous Mater. 44 (2001) p. 227.CrossRefGoogle Scholar
7. Ho, K.M., Chan, C.T., and Soukoulis, C.M., Phys. Rev. Lett. 65 (1990) p. 3152.CrossRefGoogle Scholar
8. Monovoukas, Y. and Gast, A.P., J. Colloid Interface Sci. 128 (1989) p. 533.CrossRefGoogle Scholar
9. Ziherl, P. and Kamien, R.D., J. Phys. Chem. B 105 (2001) p. 10147.CrossRefGoogle Scholar
10. Yethiraj, A. and Blaaderen, A. van, Nature 421 (2003) p. 513.CrossRefGoogle Scholar
11. Bartlett, P., Ottewill, R.H., and Pusey, P.N., J. Chem. Phys. 93 (1990) p. 1299.CrossRefGoogle Scholar
12. Hoogenboom, J.P., Langen-Suurling, A.K. van, Romijn, J., and Blaaderen, A. van, Phys. Rev. Lett. 90 138301 (2003).CrossRefGoogle Scholar
13. Conway, J.H. and Sloane, N.J.A., Sphere Packings, Lattices, and Groups (Springer, New York, 1999).CrossRefGoogle Scholar
14. Schütte, K. and Waerden, B.L. van der, Math. Ann. 125 (1953) p. 325.CrossRefGoogle Scholar
15. Sloane, N.J.A., Hardin, R.H., Duff, T.D.S., and Conway, J.H., Discrete Comput. Geom. 14 (1995) p. 237.CrossRefGoogle Scholar
16. Frank, F.C., Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 215 (1952) p. 43.Google Scholar
17. Betke, U., Henk, M., and Wills, J.M., Discrete Comput. Geom. 13 (1995) p. 297.CrossRefGoogle Scholar
18. Aizenberg, J., Braun, P.V., and Wiltzius, P., Phys. Rev. Lett. 84 (2000) p. 2997.CrossRefGoogle Scholar
19. Lee, I., Zheng, H.P., Rubner, M.F., and Hammond, P.T., Adv. Mater. 14 (2002) p. 572.3.0.CO;2-B>CrossRefGoogle Scholar
20. Yin, Y.D. and Xia, Y.N., Adv. Mater. 13 (2001) p. 267.3.0.CO;2-9>CrossRefGoogle Scholar
21. Yin, Y.D., Lu, Y., Gates, B., and Xia, Y.N., J. Am. Chem. Soc. 123 (2001) p. 8718.CrossRefGoogle Scholar
22. Kravitz, S., Eng. Mater. Des. 12 (1969) p. 875.Google Scholar
23. Levine, S., Bowen, B.D., and Partridge, S.J., Colloids Surf. 38 (1989) p. 325.CrossRefGoogle Scholar
24. Velev, O.D., Furusawa, K., and Nagayama, K., Langmuir 12 (1996) p. 2374.CrossRefGoogle Scholar
25. Velev, O.D., Furusawa, K., and Nagayama, K., Langmuir 12 (1996) p. 2385.CrossRefGoogle Scholar
26. Velev, O.D. and Nagayama, K., Langmuir 13 (1997) p. 1856.CrossRefGoogle Scholar
27. Manoharan, V.N., Elsesser, M.T., and Pine, D.J., Science 301 (2003) p. 483.CrossRefGoogle Scholar
28. Johnson, N.W., Can. J. Math. 18 (1966) p. 169.CrossRefGoogle Scholar
29. Torquato, S., Truskett, T.M., and Debenedetti, P.G., Phys. Rev. Lett. 84 (2000) p. 2064.CrossRefGoogle Scholar
30. Torquato, S. and Stillinger, F.H., J. Phys. Chem. B 106 (2002) p. 8354.CrossRefGoogle Scholar
31. Nelson, D.R., Solid State Phys: Adv. Res. Appl. 42 (1989) p. 1.CrossRefGoogle Scholar
32. Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M., Phys. Rev. Lett. 89 075507 (2002).CrossRefGoogle Scholar
33. Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., and Robinson, D.S., Phys. Rev. Lett. 90 195504 (2003).CrossRefGoogle Scholar
34. Kegel, W.K. and Blaaderen, A. van, Science 287 (2000) p. 290.CrossRefGoogle Scholar
35. Weeks, E.R., Crocker, J.C., Levitt, A.C., Schofield, A., and Weitz, D.A., Science 287 (2000) p. 627.CrossRefGoogle Scholar
36. O'Hern, C.S., Langer, S.A., Liu, A.J., and Nagel, S.R., Phys. Rev. Lett. 86 (2001) p. 111.CrossRefGoogle Scholar
37. Clarke, A.S. and Jonsson, H., Phys. Rev. E 47 (1993) p. 3975.CrossRefGoogle Scholar
38. Gasser, U., Schofield, A., and Weitz, D.A., J. Phys.: Condens. Matter 15 (2003) p. S375.Google Scholar
39. Bernal, J.D., Nature 185 (1960) p. 68.CrossRefGoogle Scholar