Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T22:55:48.510Z Has data issue: false hasContentIssue false

Condensation heat transfer on superhydrophobic surfaces

Published online by Cambridge University Press:  15 May 2013

Nenad Miljkovic
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA; nmiljkov@mit.edu
Evelyn N. Wang
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA; enwang@mit.edu
Get access

Abstract

Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of superhydrophobic surfaces with even higher droplet mobility and, in some cases, coalescence-induced droplet jumping. Here, we provide a review of new insights gained to tailor superhydrophobic surfaces for enhanced condensation heat transfer considering the role of surface structure, nucleation density, droplet morphology, and droplet dynamics. Furthermore, we identify challenges and new opportunities to advance these surfaces for broad implementation in thermofluidic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parker, A.R., Lawrence, C.R., Nature 414, 33 (2001).CrossRefGoogle Scholar
Zheng, Y.M., Bai, H., Huang, Z.B., Tian, X.L., Nie, F.Q., Zhao, Y., Zhai, J., Jiang, L., Nature 463, 640 (2010).CrossRefGoogle Scholar
Bhushan, B., Philos. Trans. R. Soc. London, Ser. A 367, 1445 (2009).Google Scholar
Cheng, Y.T., Rodak, D.E., Appl. Phys. Lett. 86 (2005).Google Scholar
Mockenhaupt, B., Ensikat, H.J., Spaeth, M., Barthlott, W., Langmuir 24, 13591 (2008).CrossRefGoogle Scholar
Beer, J.M., Prog. Energy Combust. Sci. 33, 107 (2007).CrossRefGoogle Scholar
Peters, T.B., McCarthy, M., Allison, J., Dominguez-Espinosa, F.A., Jenicek, D., Kariya, H.A., Staats, W.L., Brisson, J.G., Lang, J.H., Wang, E.N., IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1637 (2012).CrossRefGoogle Scholar
Khawaji, A.D., Kutubkhanah, I.K., Wie, J.M., Desalination 221, 47 (2008).CrossRefGoogle Scholar
Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., Wang, E.N., Nanotechnology 22, 292001 (2011).CrossRefGoogle Scholar
Perez-Lombard, L., Ortiz, J., Pout, C., Energy Build 40, 394 (2008).CrossRefGoogle Scholar
Li, B.Z., Yao, R.M., Renewable Energy 34, 1994 (2009).CrossRefGoogle Scholar
von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., Suay-Cortes, R., J. Agric. Eng. Res. 75, 1 (2000).CrossRefGoogle Scholar
Kaschiev, D., Nucleation: Basic Theory With Applications (Butterworth-Heinemann, Oxford, 2000).Google Scholar
Nusselt, W.Z., Z. Ver. Dtsch. Ing. 60, 541 (1916).Google Scholar
Marto, P.J., Looney, D.J., Rose, J.W., Wanniarachchi, A.S., Int. J. Heat Mass Trans. 29, 1109 (1986).CrossRefGoogle Scholar
Bonner, R.W.I., in Proceedings of the International Heat Transfer Conference (ASME, Washington, DC, 2010).Google Scholar
Vemuri, S., Kim, K.J., Wood, B.D., Govindaraju, S., Bell, T.W., Appl. Therm. Eng. 26, 421 (2006).CrossRefGoogle Scholar
Vemuri, S., Kim, K.J., Int. J. Heat Mass Trans. 49, 649 (2006).CrossRefGoogle Scholar
Das, A.K., Kilty, H.P., Marto, P.J., Andeen, G.B., Kumar, A., J. Heat Trans. 122, 278 (2000).CrossRefGoogle Scholar
Erb, R.A., Thelen, E., Ind. Eng. Chem. 57, 49 (1965).CrossRefGoogle Scholar
Wilkins, D.G., Bromley, L.A., Read, S.M., AlChE J. 19, 119 (1973).CrossRefGoogle Scholar
Woodruff, D.W., Westwater, J.W., Int. J. Heat Mass Trans. 22, 629 (1979).CrossRefGoogle Scholar
Beysens, D., C.R. Phys. 7, 1082 (2006).CrossRefGoogle Scholar
Beysens, D., Steyer, A., Guenoun, P., Fritter, D., Knobler, C.M., Phase Transitions 31, 219 (1991).CrossRefGoogle Scholar
Fritter, D., Knobler, C.M., Beysens, D.A., Phys. Rev. A 43, 2858 (1991).CrossRefGoogle Scholar
Schmidt, E., Schurig, W., Sellschopp, W., Forsch. Ingenieurwes. 1, 53 (1930).CrossRefGoogle Scholar
Kim, H.Y., Lee, H.J., Kang, B.H., J. Colloid Interface Sci. 247, 372 (2002).CrossRefGoogle Scholar
Dimitrakopoulos, P., Higdon, J.J.L., J. Fluid Mech. 395, 181 (1999).CrossRefGoogle Scholar
Boreyko, J.B., Chen, C.H., Phys. Rev. Lett. 103, 184501 (2009).CrossRefGoogle Scholar
Rose, J.W., Proc. Inst. Mech. Eng., Part A: J. Power Eng. 216, 115 (2002).CrossRefGoogle Scholar
Sikarwar, B.S., Khandekar, S., Agrawal, S., Kumar, S., Muralidhar, K., Heat Trans. Eng. 33, 301 (2012).CrossRefGoogle Scholar
Lafuma, A., Quéré, D., Nat. Mater. 2, 457 (2003).CrossRefGoogle Scholar
Patankar, N.A., Soft Matter 6, 1613 (2010).CrossRefGoogle Scholar
Bocquet, L., Lauga, E., Nat. Mater. 10, 334 (2011).CrossRefGoogle Scholar
Kang, S.H., Wu, N., Grinthal, A., Aizenberg, J., Phys. Rev. Lett. 107, 177802 (2011).CrossRefGoogle Scholar
Young, T., Philos. Trans. R. Soc. London 95, 65 (1805).Google Scholar
Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
Cassie, A.B.D., Baxter, S., Trans. Faraday Soc. 40, 546 (1944).CrossRefGoogle Scholar
Gao, L.C., Fadeev, A.Y., McCarthy, T.J., MRS Bull. 33, 747 (2008).CrossRefGoogle Scholar
Quéré, D., Annu. Rev. Mater. Res. 38, 71 (2008).CrossRefGoogle Scholar
Dorrer, C., Ruhe, J., Soft Matter 5, 51 (2009).CrossRefGoogle Scholar
Roach, P., Shirtcliffe, N.J., Newton, M.I., Soft Matter 4, 224 (2008).CrossRefGoogle Scholar
Moulinet, S., Bartolo, D., Eur. Phys. J. E 24, 251 (2007).CrossRefGoogle Scholar
Narhe, R.D., Beysens, D.A., Europhys. Lett. 75, 98 (2006).CrossRefGoogle Scholar
Narhe, R.D., Beysens, D.A., Phys. Rev. Lett. 93, 076103 (2004).CrossRefGoogle Scholar
Narhe, R.D., Beysens, D.A., Langmuir 23, 6486 (2007).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., Wang, E.N., Nano Lett. 13, 179 (2013).CrossRefGoogle Scholar
Dorrer, C., Ruhe, J., Langmuir 23, 3820 (2007).CrossRefGoogle Scholar
Wier, K.A., McCarthy, T.J., Langmuir 22, 2433 (2006).CrossRefGoogle Scholar
Chen, C.H., Cai, Q.J., Tsai, C.L., Chen, C.L., Xiong, G.Y., Yu, Y., Ren, Z., Appl. Phys. Lett. 90, 173108 (2007).CrossRefGoogle Scholar
Dorrer, C., Ruhe, J., Adv. Mater. 20, 159 (2008).CrossRefGoogle Scholar
Chen, X., Wu, J., Ma, R., Hua, M., Koratkar, N., Yao, S., Wang, Z., Adv. Funct. Mater. 21, 4617 (2011).CrossRefGoogle Scholar
Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., Gleason, K.K., Nano Lett. 3, 1701 (2003).CrossRefGoogle Scholar
Rykaczewski, K., Osborn, W.A., Chinn, J., Walker, M.L., Scott, J.H.J., Jones, W., Hao, C., Yaod, S., Wang, Z., Soft Matter 8, 8786 (2012).CrossRefGoogle Scholar
Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C.V., Wang, E.N., Langmuir 40, 14424 (2012).CrossRefGoogle Scholar
Anderson, D.M., Gupta, M.K., Voevodin, A.A., Hunter, C.N., Putnam, S.A., Tsukruk, V.V., Fedorov, A.G., ACS Nano 6, 3262 (2012).CrossRefGoogle Scholar
Varanasi, K.K., Deng, T., in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 15 (Los Vegas, NV, 2010).Google Scholar
Varanasi, K.K., Hsu, M., Bhate, N., Yang, W.S., Deng, T., Appl. Phys. Lett. 95, 094101 (2009).CrossRefGoogle Scholar
Her, E.K., Ko, T.J., Lee, K.R., Oh, K.H., Moon, M.W., Nanoscale 4, 2900 (2012).CrossRefGoogle Scholar
Ji, S.M., Kim, I.Y., Kim, E.H., Jung, J.U., Kim, W.D., Lim, H.E., J. Korean Soc. Precis. Eng. 29, 19 (2012).CrossRefGoogle Scholar
Lee, A., Moon, M.W., Lim, H., Kim, W.D., Kim, H.Y., Langmuir 28, 10183 (2012).CrossRefGoogle Scholar
Thickett, S.C., Neto, C., Harris, A.T., Adv. Mater. 23, 3718 (2011).CrossRefGoogle Scholar
Yao, C.W., Garvin, T.P., Alvarado, J.L., Jacobi, A.M., Jones, B.G., Marsh, C.P., Appl. Phys. Lett. 101, 111605 (2012).CrossRefGoogle Scholar
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev. 105, 1103 (2005).CrossRefGoogle Scholar
Lopez, G.P., Biebuyck, H.A., Frisbie, C.D., Whitesides, G.M., Science 260, 647 (1993).CrossRefGoogle Scholar
Mandler, D., Turyan, I., Electroanalysis 8, 207 (1996).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Wang, E.N., ACS Nano 6, 1776 (2012).CrossRefGoogle Scholar
Rykaczewski, K., Langmuir 28, 7720 (2012).CrossRefGoogle Scholar
Kim, S., Kim, K.J., J. Heat Transfer 133, 081502 (2011).CrossRefGoogle Scholar
AbuOrabi, M., Int. J. Heat Mass Trans. 41, 81 (1998).CrossRefGoogle Scholar
Anand, S., Son, S.Y., Langmuir 26, 17100 (2010).CrossRefGoogle Scholar
Cao, L., Jones, A.K., Sikka, V.K., Wu, J.Z., Gao, D., Langmuir 25, 12444 (2009).CrossRefGoogle Scholar
Rose, J.W., Glicksman, L.R., Int. J. Heat Mass Trans. 16, 411 (1973).CrossRefGoogle Scholar
Narhe, R.D., Khandkar, M.D., Shelke, P.B., Limaye, A.V., Beysens, D.A., Phys. Rev. E 80, 031604 (2009).CrossRefGoogle Scholar
Dietz, C., Rykaczewski, K., Fedorov, A.G., Joshi, Y., Appl. Phys. Lett. 97, 033104 (2010).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Wang, E.N., presented at the3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).Google Scholar
Nosonovsky, M., Bhushan, B., Ultramicroscopy 107, 969 (2007).CrossRefGoogle Scholar
McCarthy, M., Gerasopoulos, K., Enright, R., Culver, J.N., Ghodssi, R., Wang, E.N., Appl. Phys. Lett. 100, 1 (2012).CrossRefGoogle Scholar
Bhushan, B., Nosonovsky, M., Nano Lett. 7, 2633 (2007).Google Scholar
Bhushan, B., Jung, Y.C., ACS Nano 3, 4155 (2009).Google Scholar
Pokroy, B., Kang, S.H., Mahadevan, L., Aizenberg, J., Science 323, 237 (2009).CrossRefGoogle Scholar
Liu, T.Q., Sun, W., Sun, X.Y., Ai, H.R., Langmuir 26, 14835 (2010).CrossRefGoogle Scholar
Liu, T.Q., Sun, W., Sun, X.Y., Ai, H.R., Colloids Surf., A 414, 366 (2012).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Wang, E.N., J. Heat Transfer (2012), in press.Google Scholar
Feng, J., Pang, Y., Qin, Z., Ma, R., Yao, S., ACS Appl. Mater. Interfaces 4, 6618 (2012).CrossRefGoogle Scholar
Enright, R., Dou, N., Miljkovic, N., Nam, Y., Wang, E.N., presented at the3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).Google Scholar
Dietz, C., Rykaczewski, K., Fedorov, A., Joshi, Y., J. Heat Transfer 132, 080904 (2010).CrossRefGoogle Scholar
Boreyko, J.B., Collier, P.C., ACS Nano 7, 1618 (2013)CrossRefGoogle Scholar
Rykaczewski, K., Scott, J.H.J., Rajauria, S., Chinn, J., Chinn, A.M., Jones, W., Soft Matter 7, 8749 (2011).CrossRefGoogle Scholar
Rykaczewski, K., Paxson, A.T., Anand, S., Chen, X., Wang, Z., Varanasi, K.K., Langmuir 29, 881 (2013).CrossRefGoogle Scholar
Rykaczewski, K., Chinn, J., Walker, M.L., Scott, J.H.J., Chinn, A., Jones, W., ACS Nano 5, 9746 (2011).CrossRefGoogle Scholar
Narhe, R.D., Gonzalez-Vinas, W., Beysens, D.A., Appl. Surf. Sci. 256, 4930 (2010).CrossRefGoogle Scholar
Torresin, D., Tiwari, M.K., Del Col, D., Poulikakos, D., Langmuir 29, 840 (2013).CrossRefGoogle Scholar
Feng, J., Qin, Z.Q., Yao, S.H., Langmuir 28, 6067 (2012).CrossRefGoogle Scholar
Zhang, X.T., Jin, M., Liu, Z.Y., Nishimoto, S., Saito, H., Murakami, T., Fujishima, A., Langmuir 22, 9477 (2006).CrossRefGoogle Scholar
Zhang, X.T., Jin, M., Liu, Z.Y., Tryk, D.A., Nishimoto, S., Murakami, T., Fujishima, A., J. Phys. Chem. C 111, 14521 (2007).CrossRefGoogle Scholar
He, M., Zhou, X., Zeng, X.P., Cui, D.P., Zhang, Q.L., Chen, J., Li, H.L., Wang, J.J., Cao, Z.X., Song, Y.L., Jiang, L., Soft Matter, 8, 6680 (2012).CrossRefGoogle Scholar
Nam, Y., Sharratt, S., Byon, C., Kim, S.J., Ju, Y.S., J. Microelectromech. Syst. 19, 581 (2010).CrossRefGoogle Scholar
Nam, Y., Sungtaek, Y., J. Adhes. Sci. Technol. 1 (2012).Google Scholar
Rose, J.W., Int. J. Heat Mass Trans. 10, 755 (1967).CrossRefGoogle Scholar
Boreyko, J.B., Zhao, Y.J., Chen, C.H., Appl. Phys. Lett. 99, 234105 (2011).CrossRefGoogle Scholar
Cheng, J., Vandadi, A., Chen, C.L., Appl. Phys. Lett. 101, 131909 (2012).CrossRefGoogle Scholar
Boreyko, J.B., Chen, C.H., Int. J. Heat Mass Transf. 61, 409 (2013).CrossRefGoogle Scholar
Ma, X.H., Zhou, X.D., Lan, Z., Li, Y.M., Zhang, Y., Int. J. Heat Mass Trans. 51, 1728 (2008).CrossRefGoogle Scholar
Rose, J.W., Int. J. Heat Mass Trans. 23, 539 (1980).CrossRefGoogle Scholar
Thiel, G.P., Lienhard, J.H., Int. J. Heat Mass Trans. 55, 5133 (2012).CrossRefGoogle Scholar
Barshilia, H.C., Chaudhary, A., Kumar, P., Manikandanath, N.T., Nanomaterials 2, 65 (2012).CrossRefGoogle Scholar
Azimi, G., Dhiman, R., Kwon, H.K., Paxson, A.T., Varanasi, K.K., Nat. Mater. (2013), doi: 10.1038/nmat3545.Google Scholar
Lafuma, A., Quéré, D., Europhys. Lett. 96, 56001 (2011).CrossRefGoogle Scholar
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J., Nature 477, 443 (2011).CrossRefGoogle Scholar
Anand, S., Paxson, A.T., Dhiman, R., Smith, D.J., Varanasi, K.K., ACS Nano 6, 10122 (2012).CrossRefGoogle Scholar
Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., Aizenberg, J., ACS Nano 6, 6569 (2012).CrossRefGoogle Scholar
Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., Aizenberg, J., Phys. Chem. Chem. Phys. 15, 581 (2013).CrossRefGoogle Scholar
Epstein, A.K., Wong, T.S., Belisle, R.A., Boggs, E.M., Aizenberg, J., Proc. Natl. Acad. Sci. U.S.A. 109, 13182 (2012).CrossRefGoogle Scholar
Smith, D.J., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R.E., McKinley, G.H., Varanasi, K.K., Soft Matter 9, 1772 (2013).CrossRefGoogle Scholar
Tuteja, A., Choi, W.J., McKinley, G.H., Cohen, R.E., Rubner, M.F., MRS Bull. 33, 752 (2008).CrossRefGoogle Scholar
Deng, X., Mammen, L., Butt, H.J., Vollmer, D., Science 335, 67 (2012).CrossRefGoogle Scholar
Nishimoto, S., Bhushan, B., RSC Adv. 3, 671 (2013).CrossRefGoogle Scholar
Liu, X.J., Liang, Y.M., Zhou, F., Liu, W.M., Soft Matter 8, 2070 (2012).CrossRefGoogle Scholar
Stokes, D., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (New York, Wiley, 2008).CrossRefGoogle Scholar
Stelmashenko, N.A., Craven, J.P., Donald, A.M., Terentjev, E.M., Thiel, B.L., J. Microsc. 204, 172 (2001).CrossRefGoogle Scholar
Rossi, M.P., Gogotsi, Y., Kornev, K.G., Langmuir 25, 2804 (2009).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Maroo, S.C., Cho, H.J., Wang, E.N., J. Heat Transfer 133, 080903 (2011).CrossRefGoogle Scholar
Miljkovic, N., Enright, R., Wang, E.N., J. Heat Transfer 134(8), 080902 (2012).CrossRefGoogle Scholar
Barkay, Z., Appl. Phys. Lett. 96, 183109 (2010).CrossRefGoogle Scholar
Bhushan, B., Jung, Y.C., J. Microsc. 229, 127 (2008).Google Scholar
Rykaczewski, K., Scott, J.H.J., ACS Nano 5, 5962 (2011).CrossRefGoogle Scholar
Rykaczewski, K., Scott, J.H.J., Fedorov, A.G., Appl. Phys. Lett. 98, 093106 (2011).CrossRefGoogle Scholar
Wiedemann, S., Plettl, A., Walther, P., Ziemann, P., Langmuir 29, 913 (2013).CrossRefGoogle Scholar
Rykaczewski, K., Landin, T., Walker, M.L., Scott, J.H.J., Varanasi, K.K., ACS Nano 6, 9326 (2012).CrossRefGoogle Scholar