Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T17:01:02.006Z Has data issue: false hasContentIssue false

Crystal–Melt Interfaces and Solidification Morphologies in Metals and Alloys

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

When liquids solidify, the interface between a crystal and its melt often forms branching structures (dendrites), just as frost spreads across a window. The development of a quantitative understanding of dendritic evolution continues to present a major theoretical and experimental challenge within the metallurgical community. This article looks at key parameters that describe the interface—excess free energy and mobility—and discusses how these important properties relate to our understanding of crystal growth and other interfacial phenomena such as wetting and spreading of droplets and nucleation of the solid phase from the melt. In particular, two new simulation methods have emerged for computing the interfacial free energy and its anisotropy:the cleaving technique and the capillary fluctuation method. These are presented, along with methods for extracting the kinetic coefficient and a comparison of the results to several theories of crystal growth rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Langer, J.S. in Chance and Matter: Lectures on the Theory of Pattern Formation, edited by Souletie, J., Vannimenus, J., and Stora, R. (Les Houches, North-Holland, Amsterdam, 1987) p.629.Google Scholar
2Kessler, D., Koplik, J., and Levine, H., Adv. Phys. 37 (1988) p.255.CrossRefGoogle Scholar
3Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A., Ann. Rev. Mater. Res. 32 (2002) p.163.CrossRefGoogle Scholar
4Muschol, M., Liu, D., and Cummins, H.Z., Phys. Rev`. A 46 (1992) p.1038.CrossRefGoogle Scholar
5Glicksman, M.E. and Singh, N.B., J. Cryst. Growth 98 (1989) p.277.CrossRefGoogle Scholar
6Koo, K., Ananth, R., and Gill, W.N., Phys. Rev. A 441 (1991) p.3782.CrossRefGoogle Scholar
7Napolitano, R.E., Liu, S., and Trivedi, R., Inter. Sci. 10 (2002) p.217.Google Scholar
8Liu, S., Napolitano, R.E., and Trivedi, R., Acta. Mater. 49 (2001) p.4271.CrossRefGoogle Scholar
9Napolitano, R.E. and Liu, S., Phys. Rev. B (2004) in press.Google Scholar
10Broughton, J.Q. and Gilmer, G.H., J. Chem. Phys. 84 (1986) p.5759.CrossRefGoogle Scholar
11Davidchack, R.L. and Laird, B.B., Phys. Rev. Lett. 85 (2000) p.4751.CrossRefGoogle Scholar
12Davidchack, R.L. and Laird, B.B., J. Chem. Phys. 118 (2003) p.7651.CrossRefGoogle Scholar
13Hoyt, J.J., Asta, M., and Karma, A., Phys. Rev. Lett. 86 (2001) p.5530.CrossRefGoogle Scholar
14Hoyt, J.J., Asta, M., and Karma, A., Mater. Sci. Eng., R 41 (2003) p.121.CrossRefGoogle Scholar
15Asta, M., Hoyt, J.J., and Karma, A., Phys. Rev. B 66 100101 (2002).CrossRefGoogle Scholar
16Hoyt, J.J. and Asta, M., Phys. Rev. B 65 214106 (2002).CrossRefGoogle Scholar
17Morris, J.R., Phys. Rev. B 66 144104 (2002).CrossRefGoogle Scholar
18Sun, D.Y., Asta, M., Hoyt, J.J., Mendelev, M.I., and Srolovitz, D.J., Phys. Rev. B 69 020102 (2004).Google Scholar
19Sun, D.Y., Asta, M., and Hoyt, J.J., unpublished.Google Scholar
20Morris, J.R., J.Chem. Phys. 119 (2003) p.3920.CrossRefGoogle Scholar
21Turnbull, D.H., J. Appl. Phys. 21 (1950) p.1022.CrossRefGoogle Scholar
22Spaepen, F., Acta Metall. 23 (1975) p.729.CrossRefGoogle Scholar
23Spaepen, F. and Meyer, R.B., Scripta Metall. 10 (1976) p.257.CrossRefGoogle Scholar
24Thompson, C.V., PhD thesis, Harvard University, 1979.Google Scholar
25Ackland, G.J., Bacon, D.J., Calder, A.F., and Harry, T., Philos. Mag. A 75 (1997) p.713.CrossRefGoogle Scholar
26Foiles, S.M., Phys. Rev. B 32 (1985) p.7685.CrossRefGoogle Scholar
27Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33 (1986) p.7983.CrossRefGoogle Scholar
28Ercolessi, F. and Adams, J.B., Europhys. Lett. 26 (1994) p.583.CrossRefGoogle Scholar
29Voter, A.F. and Chen, S.P. in Characterization of Defects in Materials, edited by Seigel, R.W., Weertman, J.R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, 1978) p.175.Google Scholar
30Lim, H.S., Ong, C.K., and Ercolessi, F., Surf. Sci. 269–270 (1992) p.1109.CrossRefGoogle Scholar
31Johnson, R.A. and Oh, D.J., J. Mater. Res. 4 (1989) p.1195.CrossRefGoogle Scholar
32Foiles, S.M. and Adams, J.B., Phys. Rev. B 41 (1990) p.3316.Google Scholar
33Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., and Asta, M., Philos. Mag. 83 (2003) p.3977.CrossRefGoogle Scholar
34Henry, S., Minghetti, T., and Rappaz, M., Acta Mater. 46 (1998) p.6431.CrossRefGoogle Scholar
35Glicksman, M.E. and Schaefer, R.J., J. Cryst. Growth 1 (1967) p.297.CrossRefGoogle Scholar
36Rodway, G.H. and Hunt, J.D., J. Cryst. Growth 112 (1991) p.554.CrossRefGoogle Scholar
37Hoyt, J.J., Asta, M., and Karma, A., Inter. Sci. 10 (2002) p.181.Google Scholar
38Wilson, H.A., Philos. Mag. 50 (1900) p. 238.CrossRefGoogle Scholar
39Frenkel, J., Phys. Z. Sowjetunion 1 (1932) p.498.Google Scholar
40Turnbull, D. and Bagley, B.G., in Treatise on Solid State Chemistry, Vol.5 (Plenum Press, New York, 1975) p.526.Google Scholar
41Broughton, J.Q., Gilmer, G.H., and Jackson, K.A., Phys. Rev. Lett. 49 (1982) p.1496.CrossRefGoogle Scholar
42Coriell, S.R. and Turnbull, D., Acta Metall. 30 (1982) p.2135.CrossRefGoogle Scholar
43and, L.V. MikheevChernov, A.A., J. Cryst. Growth 112 (1991) p.591.Google Scholar
44Bragard, J., Karma, A., Lee, Y.H., and Plapp, M., Inter. Sci. 10 (2002) p.119.Google Scholar