Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T02:17:01.990Z Has data issue: false hasContentIssue false

Electrochemically Prepared Pore Arrays for Photonic-Crystal Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

In the last few years, photonic crystals have gained considerable interest due to their ability to “mold the flow of light.” Photonic crystals are physically based on Bragg reflections of electromagnetic waves. In simple terms, a one-dimensional (1D) photonic crystal is a periodic stack of thin dielectric films with two different refractive indices, n1 and n2. The two important geometrical parameters determining the wavelength of the photonic bandgap are the lattice constant, a = d1(n1) + d2(n2), and the ratio of d1 to a (where d1 is the thickness of the layer with refractive index n1, and d2 is the thickness of layer n2). For a simple quarter-wavelength stack, the center wavelength λ of the 1D photonic crystal would be simply λ = 2n1d1 + 2n2d2. In the case of 2D photonic crystals, the concept is extended to either airholes in a dielectric medium or dielectric rods in air. Therefore, ordered porous dielectric materials like porous silicon or porous alumina are intrinsically 2D photonic crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For a comprehensive introduction, see Joannopoulos, J.D., Meade, R.D., and Winn, J.N., Photonic Crystals (Princeton University Press, New Jersey, 1995).Google Scholar
2.Uhlir, A., Bell Sys. Tech. J. 35 (1956) p.333.Google Scholar
3.Keller, F., Hunter, M.S., and Robinson, D.L., J.Electrochem. Soc. 100 (1953) p.411.CrossRefGoogle Scholar
4.Masuda, H. and Fukuda, K., Science 268 (1995) p.1466.Google Scholar
5.Li, A.-P., Müller, F., and Gösele, U., Electrochem. Solid-State Lett. 3 (2000) p.131.Google Scholar
6.Masuda, H., Yada, K., and Osaka, A., Jpn. J.Appl. Phys., Part 2: Lett. 37 (1998) p.L1340.Google Scholar
7.Lehmann, V. and Föll, H., J. Electrochem. Soc. 137 (1990) p.653.Google Scholar
8.Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58 (1991) p.856.CrossRefGoogle Scholar
9.Chazalviel, J.-N., Wehrspohn, R.B., and Ozanam, F., Mater. Sci. Eng., B 69–70 (2000) p.1.Google Scholar
10.Langa, S., Tiginyanu, I.M., Carstensen, J., Christophersen, M., and Föll, H., Electrochem. Solid-State Lett. 3 (2000) p.514.CrossRefGoogle Scholar
11.Allongue, P., in INSPEC Data Series, edited by Canham, L. (Institution of Electrical Engineers, London, 1997) p.3.Google Scholar
12.and, R.L. SmithCollins, S.D., J.Appl. Phys. 71 (1992) p.R1 and references therein.Google Scholar
13.Wehrspohn, R.B., Chazalviel, J.-N., Ozanam, F., and Solomon, I., Phys. Rev. Lett. 77 (1996) p.1885.CrossRefGoogle Scholar
14.Wehrspohn, R.B., Chazalviel, J.-N., Ozanam, F., and Solomon, I., Thin Solid Films 297 (1997) p.5.Google Scholar
15.Propst, E.K. and Kohl, P.A., J. Electrochem. Soc. 141 (1994) p.1006.Google Scholar
16.Rieger, M.M. and Kohl, P.A., J. Electrochem. Soc. 142 (1995) p.1490.Google Scholar
17.Wehrspohn, R.B., Chazalviel, J.-N., and Ozanam, F., J. Electrochem. Soc. 145 (1998) p. 2958.CrossRefGoogle Scholar
18.Wehrspohn, R.B., Chazalviel, J.-N., and Ozanam, F., J. Electrochem. Soc. 146 (1999) p. 3309.Google Scholar
19.Lehmann, V., J. Electrochem. Soc. 140 (1993) p.2836.Google Scholar
20.Lehmann, V., J. Electrochem. Soc. 146 (1999) p.2968.Google Scholar
21.Parkhutik, V.P. and Shershulsky, V.I., J. Phys. D: Appl. Phys. 25 (1992) p.1258.Google Scholar
22.Masuda, H., Hasegwa, F., and Ono, S., J.Elec-trochem. Soc. 144 (1997) p.L127.Google Scholar
23.Li, F., Zhang, L., and Metzger, R.M., Chem. Mater. 10 (1998) p.2470.Google Scholar
24.Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Vac. Sci. Technol., A 17 (1999) p.1428.Google Scholar
25.Masuda, H., Asoh, H., Watanabe, M., Nishio, K., Nakao, M., and Tamamura, T., Adv. Mater. 13 (2001) p.189.Google Scholar
26.Birner, A., Wehrspohn, R.B., Gösele, U., and KBusch, ., Adv. Mater. 13 (2001) p.377 and references therein.Google Scholar
27.Birner, A., Li, A.-P., Müller, F., Gösele, U., Kramper, P., Sandoghdar, V., Mlynek, J., Busch, K., and Lehmann, V., Mater. Sci. Semicond. Proc. 3 (2000) p.487.Google Scholar
28.Schilling, J., Birner, A., Müller, F., Wehrspohn, R.B., Hillebrand, R., Gösele, U., Busch, K., John, S., Leonard, S.W., and Driel, H.M. van, Opt. Mater. 17 (2001) p.7.Google Scholar
29.Grüning, U., Lehmann, V., and Engel-hardt, C.M., Appl. Phys. Lett. 66 (1995) p.3254.Google Scholar
30.Grüning, U., Lehmann, V., Ottow, S., and Busch, K., Appl. Phys. Lett. 68 (1996) p.747.Google Scholar
31.Birner, A., Grüning, U., Ottow, S., Schneider, A., Müller, F., Lehmann, V., Föll, H., and Gösele, U., Phys. Status Solidi A 165 (1998) p.111.Google Scholar
32.Rowson, S., Chelnokov, A., Cuisin, C., and Lourtioz, J.-M., in Proc. IEEE-Optoelectron, Vol. 145 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998) p.403.Google Scholar
33.Lin, S.-Y., Chow, E., Hietala, V., Villeneuve, P.R., and Joannopoulos, J.D., Science 282 (1998) p.274.Google Scholar
34.Leonard, S.W., Driel, H.M. van, Birner, A., Gösele, U., and Villeneuve, P.R., Opt. Lett. 25 (2000) p.1550.Google Scholar
35.Schilling, J., Müller, F., Matthias, S., Wehrspohn, R.B., and Gösele, U., Appl. Phys. Lett. 78 (2001) p.1180.Google Scholar
36.Masuda, H., Ohya, M., Asoh, H., Nakao, M., Nohtomi, M., and Tamamura, T., Jpn. J. Appl. Phys., Part 2: Lett. 38 (1999) p.L1405.Google Scholar
37.Masuda, H., Ohya, M., Nishio, K., Asoh, H., Nakao, M., Nohtomi, M., Yokoo, A., and Tamamura, T., Jpn. J. Appl. Phys., Part 2: Lett. 39 (2000) p.L1039.Google Scholar
38.Masuda, H., Yotsuya, M., Asana, M., Nishio, K., Nakao, M., Yokoo, A., and Tamamura, T., Appl. Phys. Lett. 78 (2001) p.826.Google Scholar