Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T22:41:38.524Z Has data issue: false hasContentIssue false

Hydrophobic surfaces for control and enhancement of water phase transitions

Published online by Cambridge University Press:  15 May 2013

Azar Alizadeh
Affiliation:
GE Global Research, Niskayuna, NY; alizadeh@research.ge.com
Vaibhav Bahadur
Affiliation:
GE Global Research, Niskayuna, NY; bahadur@ge.com
Ambarish Kulkarni
Affiliation:
Lifing Lab, GE Global Research, Niskayuna, NY; kulkarna@research.ge.com
Masako Yamada
Affiliation:
Advanced Computing Lab, GE Global Research, Niskayuna, NY; yamada@research.ge.com
James A. Ruud
Affiliation:
GE Global Research, Niskayuna, NY; ruud@ge.com
Get access

Abstract

Surface wettability has emerged as a powerful tool to influence phase change phenomena such as ice formation and steam condensation. Ice mitigation using passive coatings offers tremendous promise; however, there remain several fundamental, durability- and manufacturing-related challenges that need to be addressed to harness the benefits of these coatings. Challenges limiting industrial utilization of such coatings can be classified into three categories: fundamental (frost buildup, non-zero ice adhesion, bulk ice nucleation, variable icing conditions), durability-related (harsh environment resistance, liquid impact resistance, erosion, fatigue), and manufacturing-related (scalability, coating economics). The role of passive surfaces in enhancing condensation heat transfer is a potential game changer in power plant efficiency enhancement; however, the benefits of such coatings will only be realized when durability and manufacturing challenges have been fully addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Laforte, J.L., Alltaire, M.A., Laflamme, J., Atmos. Res. 46, 143 (1998).CrossRefGoogle Scholar
Ryerson, C.C., Cold Reg. Sci. Technol. 65, 97 (2011).CrossRefGoogle Scholar
Laakso, T., Baring-Gould, I., Durstewitz, M., Horbaty, R., Lacroix, A., Peltola, E., Ronsten, G., Tallhaug, L., Wallenius, T., State of the Art of Wind Energy in Cold Climates (2010); www.vtt.fi/publications/index.jsp.Google Scholar
Menini, R., Farzaneh, M., Surf. Coat. Technol. 203, 1941 (2009).CrossRefGoogle Scholar
Jellinek, H.H.G., J. Colloid. Sci. 14, 268 (1959).CrossRefGoogle Scholar
Croutch, V.K., Hartley, R.A., J. Coat. Technol. 64, 41 (1992).Google Scholar
Laforte, C., Carriere, J.C., Laforte, J.L., International Workshop on Atmospheric Icing of Structures (Czech Republic, 2002).Google Scholar
Cao, L., Jones, A., Sikka, V.K., Wu, J., Gao, D., Langmuir 25, 12444 (2009).CrossRefGoogle Scholar
Daton, A., Doiuk, H., Laforte, C., Kening, S., J. Adhes. Sci. Technol. 23, 1907 (2009).Google Scholar
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., Aizenberg, J., ACS Nano 4, 7699 (2010).CrossRefGoogle Scholar
Mueler, A.J., McKinley, G.H., Cohen, R.E., ACS Nano 4, 7048 (2010).CrossRefGoogle Scholar
Alizadeh, A., Yamada, M., Ri, L., Sheng, W., Otta, S., Zhong, S., Ge, L., Dhinojwala, A., Conway, K., Bahadur, V., Vincequerra, A.J., Stephens, B., Blohm, M.L., Langmuir 28, 3180 (2012).CrossRefGoogle Scholar
Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., Aizenberg, J., ACS Nano 6, 6569 (2012).CrossRefGoogle Scholar
Stone, H., ACS Nano 6, 6536 (2012).CrossRefGoogle Scholar
Meuler, A., Smith, J.D., Varanasi, K., Mabry, J.M., McKinley, G.H., Cohen, R.E., ACS Appl. Mater. Interfaces 2, 3100 (2010).CrossRefGoogle Scholar
Laforte, C., Beisswenger, A., International Workshop on Atmospheric Icing of Structures (Montreal, 2005).Google Scholar
Blohm, M.L., “Nanotechnology: A Path to Commercialization at GE”, Presented at the MRS Fall Meeting, Boston, MA, 2009.Google Scholar
Boluk, Y., Burksoy, E.M., Haine, A.M., “Adhesion of Freezing Precipitates to Aircraft Surfaces,” Report for Transportation Development Center, Safety and Security Transport Canada, 1996.Google Scholar
Ayres, J., Simendinger, W.H., Balik, C.M., J. Coat. Technol. Res. 4, 463 (2007).CrossRefGoogle Scholar
Nosonovsky, M., Hejazi, V., ACS Nano 6, 8488 (2012).CrossRefGoogle Scholar
Varanasi, K., Deng, T., Smith, J.D., Hsu, M., Bhate, N., Appl. Phys. Lett. 97, 234102 (2010).CrossRefGoogle Scholar
Quéré, D., Ann. Rev. Matls. Res. 38, 71 (2008).CrossRefGoogle Scholar
Alizadeh, A., Bahadur, V., Zhong, S., Shang, W., Li, R., Ruud, J., Yamada, M., Ge, L., Dhinojwala, A., Sohal, M., Appl. Phys. Lett. 100, 111601 (2012).CrossRefGoogle Scholar
Alizadeh, A., Bahadur, V., Shang, W., Zhu, Y., Buckley, D., Dhinojwala, A., Sohal, M., Langmuir (2013), in press.Google Scholar
Tourkine, P., LeMerrer, M., Quéré, D., Langmuir 25, 7214 (2009).CrossRefGoogle Scholar
Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., Aizenberg, J., Phys. Chem. Chem. Phys. 15, 581 (2013).CrossRefGoogle Scholar
Yamada, M., Alizadeh, A., Moore, B., ASCR Leadership Computing Challenge—Department of Energy (Argonne National Laboratory, 2011).Google Scholar
Petrenko, V.F., Whitworth, R.W., Physics of Ice (Oxford University Press, New York, 1999).Google Scholar
Finnicum, S.S., Westwater, J.W., Int. J. Heat Mass Transfer 32, 1541 (1989).CrossRefGoogle Scholar
Ganzevles, F.L.A., PhD thesis, Eindhoven University of Technology, The Netherlands (2002).Google Scholar
Chung, B.-J., Kim, M.C., Ahmadinejad, C.M., J. Mech. Sci. Technol. 22, 127 (2008).CrossRefGoogle Scholar
McNeil, D.A., “EPSRC, UK Department of Trade and Industry Report” (GR/K82475/01, 1999).Google Scholar
Chen, C.H., Cai, Q.J., Tsai, C.L., Chen, C.L., Xiong, G.Y., Yu, Y., Ren, Z.F., Appl. Phys. Lett. 90, 173108 (2007).CrossRefGoogle Scholar
Ruud, J.A., Varanasi, K.K., Bhate, N., Gentleman, M.M., Manoharan, M., “Nanoengineered, Superhydrophobic Surfaces for Steam Turbines and Condensers: Project Narrative”, NIST ATP Cooperative Agreement Number 70NANB7H7009 (2007).Google Scholar
Incropera, F.P., Dewitt, D.P., Fundamentals of Heat and Mass Transf. (Wiley, New York, ed. 5, 2001), pp. 615619.Google Scholar
Yin, L., Zhu, L., Wang, Q., Ding, J., Chen, ACS Appl. Mater. Interfaces 3, 1254 (2011).CrossRefGoogle Scholar
Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., Varanasi, K.K., ACS Nano 6, 10122 (2012).CrossRefGoogle Scholar
Ruud, J., Kulkarni, A., Ajdelsztajn, L., Bahadur, V., Leblanc, L., Piao, H., Sanchez, J., Sivaramakrishnan, S., Soare, M., Yosenick, T., Demiroglu, M., Manoharan, M., Blohm, M., “Nanoengineered, Superhydrophobic Surfaces for Steam Turbines and Condensers: Final Report”, fNIST ATP Cooperative Agreement Number 70NANB7H7009, March 2011.Google Scholar
Gentleman, M.M., Ruud, J.A., Manoharan, M., US Patent 7,892,660B2, February 22, 2011.Google Scholar
US Department of Energy, Annual Energy Review, (2009); http://www.eia.gov/cneaf/electricity/page/eia860.html.Google Scholar