Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T21:10:26.576Z Has data issue: false hasContentIssue false

In situ high-resolution transmission electron microscopy of material reactions

Published online by Cambridge University Press:  17 December 2013

Robert Sinclair*
Affiliation:
Stanford University; bobsinc@stanford.edu
Get access

Abstract

A review is presented of the development of in situ high-resolution transmission electron microscopy (HRTEM) and its application to directly study the atomic behavior in thermally activated material reactions. Not only are the atomic re-arrangements continuously recorded, but kinetic measurements can be made at controlled elevated temperatures. Examples include work on the atomic motion on CdTe surface ledges, solid phase epitaxial regrowth of silicon, crystallization of amorphous silicon and of amorphous tantalum oxide thin films, solid-state amorphization at metal-silicon interfaces, metal-induced crystallization of amorphous silicon, germanium and carbon, phase separation and crystallization in hafnium silicate thin films, and “spiking” across thin gate oxides separating nickel silicide from a monocrystalline silicon substrate. The future prospects of in situ HRTEM are discussed, and the increasing breadth of application of this approach is recognized, especially in light of the advances in HRTEM capabilities.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., J. Appl. Phys. 42, 5891 (1971).CrossRefGoogle Scholar
Cowley, J.M., Iijima, S., Zeitschrift 27, 445 (1972).Google Scholar
Hashimoto, H., Takai, Y., Yokota, Y., Endo, H., Fukuta, E., Jpn. J. Appl. Phys. 19, L1 (1980).Google Scholar
Sinclair, R., Yamashita, T., Ponce, F.A., Nature 290, 386 (1981).Google Scholar
Sinclair, R., Ponce, F.A., Yamashita, T., Smith, D.J., Camps, R.A., Freeman, L.A., Erasmus, S.J., Nixon, W.C., Smith, K.C.A., Catto, C.J.D., Nature 298, 127 (1982).Google Scholar
Sinclair, R., Parker, M.A., Nature 322, 531 (1986).CrossRefGoogle Scholar
Bravman, J.C., Sinclair, R., J. Electron Microsc. Tech. 1, 53 (1984).CrossRefGoogle Scholar
Parker, M.A., PhD degree thesis, Stanford University (1988).Google Scholar
Sinclair, R., Parker, M.A., Kim, K.B., Ultramicroscopy 23, 383 (1987).Google Scholar
Sinclair, R., Yamashita, T., Parker, M.A., Kim, K.B., Holloway, K., Schwartzman, A.F., Acta Crystallogr. Sect. A: Found. Crystallogr. 44, 965 (1988).Google Scholar
Ko, D.H., Sinclair, R., Ultramicroscopy 54, 166 (1994).Google Scholar
Schwarz, R.B., Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
Holloway, K., Sinclair, R., J. Appl. Phys. 61, 1359 (1987).Google Scholar
Ogawa, S., Yoshida, T., Kouzaki, T., Sinclair, R., J. Appl. Phys. 70, 827 (1991).Google Scholar
Holloway, K., Sinclair, R., J. Less-Common Met. 140, 139 (1988).CrossRefGoogle Scholar
Holloway, K., Sinclair, R., Nathan, M., J. Vac. Sci. Technol., A 7, 1479 (1989).CrossRefGoogle Scholar
Kwon, K.W., Lee, H.J., Sinclair, R., Appl. Phys. Lett. 75, 935 (1999).Google Scholar
Lee, H.J., Kwon, K.W., Ryu, C., Sinclair, R., Acta Mater. 47, 3965 (1999).Google Scholar
Konno, T.J., Sinclair, R., Philos. Mag. B 66, 749 (1992).Google Scholar
Konno, T.J., Sinclair, R., Philos. Mag. B 71, 163 (1995).CrossRefGoogle Scholar
Konno, T.J., Sinclair, R., Philos. Mag. B 71, 179 (1995).Google Scholar
Konno, T.J., Sinclair, R., Mater. Sci. Eng., A A179/A180, 426 (1994).Google Scholar
Sinclair, R., Konno, T.J., Ultramicroscopy 56, 225 (1994).Google Scholar
Konno, T.J., Sinclair, R., Mater. Sci. Forum 204–206, 749 (1996).Google Scholar
Konno, T.J., Sinclair, R., Acta Metall. Mater. 43, 471 (1995).Google Scholar
Sinclair, R., Itoh, T., Chin, R., Microsc. Microanal. 8, 288, (2002).CrossRefGoogle Scholar
Sinclair, R., Morgiel, J., Kirtikar, A.S., Wu, I.W., Chiang, A., Ultramicroscopy 51, 41 (1993).CrossRefGoogle Scholar
Min, K.H., Sinclair, R., Park, I.S., Kim, S.T., Chung, U.I., Philos. Mag. 85, 2049 (2005).Google Scholar
Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Shanware, A., Colombo, L., Appl. Phys. Lett 80, 3183 (2002).CrossRefGoogle Scholar
Cahn, J.W., J. Chem. Phys. 42, 93 (1965).Google Scholar
Seward, T.P. III, Uhlmann, D.R., Turnbull, D., J. Am. Ceram. Soc. 51, 634 (1968).Google Scholar
Sinclair, R., Proc. ICEM XVI, 1322 (2006).Google Scholar
Nava, F., Weiss, B.Z., Ahn, K.Y., Smith, D.A., Tu, K.N., J. Appl. Phys. 64, 354 (1988).CrossRefGoogle Scholar
Yu, S., Lu, J.P., Mehrad, F., Bu, H., Shanware, A., Ramin, M., Pas, M., Visokay, M.R., Vitale, S., Yang, S.H., Jiang, P., Hall, L., Montgomery, C., Obeng, Y., Bowen, C., Hong, H., Tran, J., Chapman, R., Bushman, S., Machala, C., Blatchford, J., Kraft, R., Colombo, L., Johnson, S., McKee, B., IEDM Tech. Dig., 221 (2005).Google Scholar
Sinclair, R., Chin, R., Koh, A.L., Solorzano, G., Acta Microsc. 18, 33 (2009).Google Scholar
Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).Google Scholar
Crozier, P.A., Wang, R., Sharma, R., Ultramicroscopy 108, 1432 (2008).Google Scholar
Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F., Nørskov, J.K., Nature 427, 426 (2004).CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D., Cui, Y., Adv. Mater. 24, 6034 (2012).Google Scholar
Koh, A.L., Gidcumb, E., Zhou, O., Sinclair, R., ACS Nano 7, 2566 (2013).Google Scholar
Contarato, D., Denes, P., Doering, D., Joseph, J., Krieger, B., Physics Procedia 37, 1504 (2012).Google Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.A., King, W.E., Browning, N.D., Campbell, G.H., Science 321, 1472 (2008).Google Scholar