Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T06:34:25.209Z Has data issue: false hasContentIssue false

Microporous Silica and Zeolite Membranes for Hydrogen Purification

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Microporous amorphous silica and zeolite membranes are made as thin films on a multilayer porous support. The membranes have a network of connected micropores with ∼0.5–nm diameters. Net transport of small molecules on this network occurs under the driving force of a gradient in chemical potential. Favorable combinations of sorption selectivity and diffusion mobility in the membrane materials lead to high H2 fluxes and good selectivity with respect to other gases. The membranes show potential for application in H2 separation under harsh conditions. Amorphous silica membranes show very high H2 fluxes because they can be made very thin; silicalite-type zeolite membranes are expected to have a better operational stability. To make the membranes a viable option, improvements are needed in reducing membrane defects and manufacturing costs and enhancing reproducibility and operational stability. This article summarizes the state of the art, provides relevant definitions, and outlines the base design and long-term specifications of viable supported membrane structures. This is followed by an overview of transport properties, synthesis, and operational stability of the membrane and the supporting structures. Directions for future research programs are provided by demonstrating how the selection of the actual membrane composition and supporting structure can be derived from an application-based design. The success of such a design depends critically on fundamental studies of membrane transport, strength, and operational stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 IZA Structure Commission Web site, “Database of zeolite structures,” http://www. izastructure.org/databases (accessed August 2006).Google Scholar
2 Casanave, D. Ciavarella, P. Fiaty, K. and Dalmon, J.A. Chem. Eng. Sci. 54 (1999) p. 2807 Google Scholar
3 Lin, Y.S. Kumakiri, I. Nair, B.N. and Alsyouri, H. Separ. Purif. Methods 31 (2) (2002) p. 229 Google Scholar
4 Verweij, H. J. Mater. Sci. 38 (23) (2003) p. 4677 CrossRefGoogle Scholar
5 Koros, W.J. Ma, Y.H. and Shimidzu, T. Pure Appl. Chem. 68 (1996) p. 1479 Google Scholar
6 Lin, Y.S. Separ. Purif. Technol. 25 (2001) p. 39 Google Scholar
7 Lai, Z.P. Bonilla, G. Diaz, I. Nery, J.G. Sujaoti, K. Amat, A.M. Kokkoli, E. Terasaki, O. Thompson, R.W. Tsapatsis, M. and Vlachos, D.G. Science 300 (2003) p. 456 Google Scholar
8 Tsai, C.Y. Tam, S.Y. Lu, Y.F. and Brinker, C.J. J. Membr. Sci. 169 (2) (2000) p. 255 CrossRefGoogle Scholar
9 Hoenicke, D. and Dietzsch, E. in Handbook of Porous Solids, edited by Schueth, F., Sing, K.S.W. and Weitkamp, J. (Wiley, Weinheim, Germany, 2002) p. 1395 CrossRefGoogle Scholar
10 Rijn, C.J.M. van, Nijdam, W. Kuiper, S. Veldhuis, G.J. Wolferen, H.A.G.M. van, and Elwenspoek, M.C. J. Micromech. Microeng. 9 (1999) p. 170 Google Scholar
11 Benes, N.E. H.Bouwmeester, J.M. and Verweij, H. Chem. Eng. Sci. 57 (14) (2002) p. 2673 Google Scholar
12 Dong, J. Lin, Y.S. and Liu, W. AIChE J. 46 (2000) p. 1957 Google Scholar
13 Vos, R.M. de and Verweij, H. J. Membr. Sci. 143 (1) (1998) p. 37 Google Scholar
14 Costa, J.C. Diniz da, Lua, G.Q. Rudolph, V. and Lin, Y.S. J. Membr. Sci. 198 (1) (2002) p. 9 Google Scholar
15 Lee, D. and Oyama, S.T. J. Membr. Sci. 210 (2) (2002) p. 291 CrossRefGoogle Scholar
16 Lin, Y.S. and Burggraaf, A.J. J. Membr. Sci. 79 (1) (1993) p. 65 Google Scholar
17 Mason, E.A. and Malinauskas, A.P. Gas Transport in Porous Media: The Dusty Gas Model (Elsevier, 1983).Google Scholar
18 Benes, N.E. Verzijl, R. and Verweij, H. Comput. Chem. Eng. 23 (1999) p. 975 Google Scholar
19 Tsapatsis, M. and Gavalas, G. J. Membr. Sci. 87 (1994) p. 281 Google Scholar
20 Nomura, M. Ono, K. Gopalakrishnan, S. Sugawara, T. and Nakao, S. J. Membr. Sci. 251 (1–2) p. 151 Google Scholar
21 Vos, R.M. de, Maier, W.F. and Verweij, H. J. Membr. Sci. 158 (2) (1999) p. 277 Google Scholar
22 Lu, Y. Cao, G. Kale, R.P. Prabakar, S. Lopez, G.P. and Brinker, C.J. Chem. Mater. 11 (1999) p. 1223 CrossRefGoogle Scholar
23 Duke, M.C. J.C. Diniz da Costa, Lua, G.Q. Petch, M. and Gray, P. J. Membr. Sci. 241 (2) (2004) p. 325 Google Scholar
24 Kusakabe, K. Shibao, F. Zhao, G. Sotowa, K.I. Watanabe, K. and Saito, T. J. Membr. Sci. 215 (1–2) (2003) p. 321 Google Scholar
25 Iwamoto, Y. Sato, K. Kato, T. Inada, T. and Kubo, Y. J. Eur. Ceram. Soc. 25 (2–3) (2005) p. 257 Google Scholar
26 Nomura, M. Yamaguchi, T. and Nakao, S. Ind. Eng. Chem. Res. 36 (10) (1997) p. 4217 CrossRefGoogle Scholar
27 McCool, B.A. and DeSisto, W.J. Ind. Eng. Chem. Res. 43 (2004) p. 2478 Google Scholar
28 Wong, W.C. L.Au, T.Y. Ariso, C. Tellez, and Yeung, K.L. J. Membr. Sci. 191 (2001) p. 143 CrossRefGoogle Scholar
29 Dong, J. and Lin, Y.S. Ind. Eng. Chem. Res. 37 (1998) p. 2404 Google Scholar
30 Lovallo, M.C. Gouzinis, A. and Tsapatsis, M. AIChE J. 44 (1996) p. 1903 Google Scholar
31 Tsapatsis, M. Lovallo, M.C. Okubo, T. Davis, M. E. and Sadakata, M. Chem. Mater. 7 (1995) p. 1734 Google Scholar
32 Pan, M. and Lin, Y.S. Microporous Mesoporous Mater. 43 (2001) p. 319 Google Scholar
33 Yuan, W. Lin, Y.S. and Yang, W.S. J. Am. Chem. Soc. 126 (15) (2004) p. 4776 Google Scholar
34 Dong, J. Lin, Y.S. M.Hu, Z.C. Peascoe, R.A. and Payzant, E.A. Microporous Mesoporous Mater. 34 (2000) p. 241 CrossRefGoogle Scholar
35 Peters, T.A. Fontalvo, J. Vorstman, M.A.G. Benes, N.E. Dam, R.A. van, Vroon, Z.A.E.P. Soest-Vercammen, E.L.J. van, and Keurentjes, J.T.F. J. Membr. Sci. 248 (1–2) (2005) p. 73 Google Scholar
36 Mottern, M.L. Quickel, G.T. Shi, J.Y. Yu, D. and Verweij, H. in Proc. 8th Int. Conf. Inorganic Membranes, July 18-22, 2004, edited by Lin, Y.S. (Adams Press, Chicago, 2004) p. 26 Google Scholar
37 Etienne, J. Larbot, A. Julbe, A. Guizard, C. and Cot, L. J. Membr. Sci. 86 (1994) p. 95 CrossRefGoogle Scholar
38 Voigt, I. Fisher, G. Puhlfürβ, P., Schleifenheimer, M. and Stahn, M. Sep. Purif. Technol. 32 (2003) p. 87 Google Scholar
39 Liang, J. Jiang, X. Liu, G. Deng, Z. Zhuang, J. Li, F. and Li, Y. Mater. Res. Bull. 38 (2003) p. 161 Google Scholar
40 Shi, J.Y. and Verweij, H. Langmuir 21 (2005) p. 5570 Google Scholar
41 Lee, D. Zhang, L. Oyama, S.T. Niu, S. and Saraf, R.F. J. Membr. Sci. 231 (2004) p. 117 CrossRefGoogle Scholar
42 Shqau, K. Mottern, M.L. Yu, D. and Verweij, H. J. Am. Ceram. Soc. 89 (6) (2006) p. 1790 Google Scholar
43 Nijmeijer, A. Huiskes, C. Sibelt, N.G.M. Kruidhof, H. and Verweij, H. Am. Ceram. Soc. Bull. 77 (1998) p. 95 Google Scholar
44 Biesheuvel, P.M. and Verweij, H. J. Membr. Sci. 156 (1999) p. 141 Google Scholar
45 Yoshino, Y. Suzuki, T. Nair, B.N. Taguchi, H. and Itoh, N. J. Membr. Sci. 267 (1) (2005) p. 8 Google Scholar
46 Brinkman, H.W. Eijk, J.P.G.M. van, Meinema, H.A. and Terpstra, R.A. Am. Ceram. Soc. Bull. 78 (12) (1999) p. 51 Google Scholar
47 Ceramem Corp. Web page, “Technology Brief: Ceramic Membrane Modules,” www. ceramem.com/techbrief.pdf (accessed August 2006).Google Scholar
48 Millan, A.J. Nieto, M.I. Moreno, R. and Baudin, C. J. Eur. Ceram. Soc. 22 (2002) p. 2223 Google Scholar
49 Toy, C. and Whittemore, O.J. Ceram. Int. 15 (1989) p. 167 Google Scholar
50 Benes, N.E. Nijmeijer, A. and Verweij, H. in Recent Advances in Gas Separation by Microporous Ceramic Membranes, edited by Kanellopoulos, N.K. (Elsevier, 2000) p. 335 Google Scholar
51 Huiskes, C. Luijten, M. Kruidhof, H. Benes, N.E. Blank, D.H.M. and Bouwmeester, H.J.M. in Proc. 8th Int. Conf. Inorganic Membranes, July 18-22, 2004, edited by Lin, Y.S. (Adams Press, Chicago, 2004) p. 130 Google Scholar
52 Benes, N.E. Spijksma, G. Verweij, H. Wormeester, H. and Poelsema, B. AIChE J. 47 (5) (2001) p. 1212 Google Scholar
53 Welk, M.E. and Nenoff, T.M. in Proc. 8th Int. Conf. Inorganic Membranes, July 18-22, 2004, edited by Lin, Y.S. (Adams Press, Chicago, 2004) p. 220 Google Scholar
54 Pan, M. and Lin, Y.S. Microporous Mesoporous Mater. 43 (2001) p. 319 Google Scholar
55 Masuda, T. Fukumoto, N. Kitamura, M. Mukai, S.R. Hashimoto, K. Tanaka, T. and Funabiki, T. Microporous Mesoporous Mater. 48 (2001) p. 239 CrossRefGoogle Scholar
56 Hong, M. Falconer, J.L. and Noble, R.D. Ind. Eng. Chem. Res. 44 (2005) p. 4035 CrossRefGoogle Scholar
57 Benes, N.E. Biesheuvel, P.M. and Verweij, H. AIChE J. 45 (1999) p. 1322 Google Scholar
58 Fotou, G.P. Lin, Y.S. and Pratsinis, S.E. J. Mater. Sci. 30 (1995) p. 2803 Google Scholar
59 Nijmeijer, A. “Hydrogen-Selective Silica Membranes for Use in Membrane Steam Reforming,” PhD thesis, University of Twente (1999).Google Scholar
60 Deng, S.G. and Lin, Y.S. Ind. Eng. Chem. Res. 34 (1995) p. 4063 Google Scholar
61 Vos, R.M. de, “High-Selectivity, High-Flux Silica Membranes for Gas Separation,” PhD thesis, University of Twente (1998).Google Scholar
62 Nijmeijer, A. Kruidhof, H. Bredesen, R. and Verweij, H. J. Am. Ceram. Soc. 84 (1) (2001) p. 136 Google Scholar
63 Giannuzzi, A.L. and Stevie, F.A. Micron 30 (3) (1999) p. 197 Google Scholar
64 Biesheuvel, P.M. and Lyklema, J. J. Phys.: Condens. Matter 17 (2005) p. 6337 Google Scholar
65 Benes, N.E. “Mass Transport in Thin Supported Silica Membranes,” PhD thesis, University of Twente (2000).Google Scholar
66 Biesheuvel, P.M. Breedveld, V. Higler, A.P. and Verweij, H. Chem. Eng. Sci. 56 (11) (2001) p. 3517 Google Scholar
67 Chen, X. Yang, W. Liu, J. and Lin, L. J. Membr. Sci. 255 (1–2) (2005) p. 201 Google Scholar
68 Segerer, H. Am. Ceram. Soc. Bull. 77 (3) (1998) p. 64 Google Scholar
69 Woudenberg, F.C.M. Sager, W.F.C. Elshof, J.E. ten, and Verweij, H. J. Am. Ceram. Soc. 87 (8) (2004) p. 1430 Google Scholar
70 Hart, M.J. and Evans, A.G.R. Semicond. Sci. Technol. 3 (1988) p. 421 Google Scholar
71 Cao, G.Z. Meijerink, J. Brinkman, H.W. and Burggraaf, A.J. J. Membr. Sci. 83 (1993) p. 221 Google Scholar