Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T22:56:13.523Z Has data issue: false hasContentIssue false

Optical activity in single-molecule surface-enhanced Raman scattering: Role of symmetry

Published online by Cambridge University Press:  09 August 2013

Lev Chuntonov
Affiliation:
Department of Chemistry, University of Pennsylvania; chuntl@sas.upenn.edu
Gilad Haran
Affiliation:
Department of Chemical Physics, Weizmann Institute of Science; gilad.haran@weizmann.ac.il
Get access

Abstract

Light emitted by molecules embedded within metal nanoparticle clusters is strongly enhanced by interaction with surface plasmons. This allows, for example, the observation of Raman scattering from individual molecules. The symmetry of the metal cluster may affect the Raman-scattered light by generating new polarization states. This article reviews the use of symmetry theory to analyze the plasmonic normal modes of metal nanoparticle trimers. The lowest bright energy modes are degenerate for an equilateral triangle but split when the symmetry is broken. When a single molecule in the gap between two of the particles emits, it excites the plasmon modes, typically off-resonance, and the ensuing interference between the modes rotates the polarization of the emitted light. This so-called Raman optical activity can generate circularly polarized light at the Raman frequency. This curious phenomenon, which was demonstrated experimentally, may prove useful for future plasmonic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moskovits, M., J. Raman Spectrosc. 36, 485 (2005).CrossRefGoogle Scholar
Le Ru, E.C., Etchegoin, P.G., Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).Google Scholar
Le Ru, E.C., Meyer, M., Etchegoin, P.G., J. Phys. Chem. B 110, 1944 (2006).CrossRefGoogle Scholar
Michaels, A.M., Nirmal, M., Brus, L.E., J. Am. Chem. Soc. 121, 9932 (1999).CrossRefGoogle Scholar
Dieringer, J.A., Lettan, R.B., Scheidt, K.A., Van Duyne, R.P., J. Am. Chem. Soc. 129, 16249 (2007).CrossRefGoogle Scholar
Weiss, A., Haran, G., J. Phys. Chem. B 105, 12348 (2001).CrossRefGoogle Scholar
Haran, G., Acc. Chem. Res. 43, 1135 (2010).CrossRefGoogle Scholar
Camden, J.P., Dieringer, J.A., Zhao, J., Van Duyne, R.P., Acc. Chem. Res. 41, 1653 (2008).CrossRefGoogle Scholar
Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Phys. Rev. Lett. 78, 1667 (1997).CrossRefGoogle Scholar
Nie, S., Emory, S.R., Science 275, 1102 (1997).CrossRefGoogle Scholar
Zuloaga, J., Prodan, E., Nordlander, P., Nano Lett. 9, 887 (2009).CrossRefGoogle Scholar
Taminiau, T.H., Stefani, F.D., Segerink, F.B., van Hulst, N.F., Nat. Photon. 2, 234 (2008).CrossRefGoogle Scholar
Le Ru, E.C., Etchegoin, P.G., Annu. Rev. Phys. Chem 63, 65 (2012).CrossRefGoogle Scholar
Shegai, T., Vaskevich, A., Rubinstein, I., Haran, G., J. Am. Chem. Soc. 131, 14390 (2009).CrossRefGoogle Scholar
Haran, G., Isr. J. Chem. 44, 385 (2004).CrossRefGoogle Scholar
Hao, E., Schatz, G.C., J. Chem. Phys 120, 357 (2004).CrossRefGoogle Scholar
Romero, I., Aizpurua, J., Bryant, G.W., García de Abajo, F.J., Opt. Express 14, 9988 (2006).CrossRefGoogle Scholar
Li, Z., Shegai, T., Haran, G., Xu, H., ACS Nano 3, 637 (2009).CrossRefGoogle Scholar
Jiang, J., Bosnick, K., Maillard, M., Brus, L., J. Phys. Chem. B 107, 9964 (2003).CrossRefGoogle Scholar
Michaels, A.M., Jiang, J., Brus, L., J. Phys. Chem. B 104, 11965 (2000).CrossRefGoogle Scholar
Xia, X., Zeng, J., Zhang, Q., Moran, C.H., Xia, Y., J. Phys. Chem. C 116, 21647 (2012).CrossRefGoogle Scholar
Xia, Y., Xiong, Y., Lim, B., Skrabalak, S., Angew. Chem. Int. Ed. 48, 60 (2008).CrossRefGoogle Scholar
Lim, D.-K., Jeon, K.-S., Kim, H.M., Nam, J.-M., Suh, Y.D., Nat. Mater 9, 60 (2010).CrossRefGoogle Scholar
Shegai, T., Li, Z., Dadosh, T., Zhang, Z., Xu, H., Haran, G., Proc. Natl. Acad. Sci. USA 105, 16448 (2008).CrossRefGoogle Scholar
Shegai, T., Brian, B.R., Miljković, V.D., Käll, M., ACS Nano 5, 2036 (2011).CrossRefGoogle Scholar
Hohenester, U., Trügler, A., IEEE J. Sel. Top. Quantum Electron. 14, 1430 (2008).CrossRefGoogle Scholar
Rolly, B., Stout, B.B., Bidault, S., Bonod, N., Opt. Lett. 36, 3368 (2011).CrossRefGoogle Scholar
Etchegoin, P.G., Galloway, C., Le Ru, E.C., Phys. Chem. Chem. Phys. 8, 2624 (2006).CrossRefGoogle Scholar
Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).CrossRefGoogle Scholar
Kreibig, U., Optical Properties of Metal Clusters—Springer Series in Materials Science (Springer-Verlag, Berlin/Heidelberg, 1995).CrossRefGoogle Scholar
Quinten, M., Kreibig, U., Surf. Sci 172, 557 (1986).CrossRefGoogle Scholar
Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F., Science 328, 1135 (2010).CrossRefGoogle Scholar
Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., Chem. Rev. 111, 3913 (2011).CrossRefGoogle Scholar
Hentschel, M., Saliba, M., Vogelgesang, R., Giessen, H., Alivisatos, A.P., Liu, N., Nano Lett. 10, 2721 (2010).CrossRefGoogle Scholar
Prodan, E., Radloff, C., Halas, N.J., Nordlander, P., Science 302, 419 (2003).CrossRefGoogle Scholar
Nordlander, P., Oubre, C., Prodan, E., Li, K., Stockman, M.I., Nano Lett. 4, 899 (2004).CrossRefGoogle Scholar
Wang, H., Brandl, D.W., Nordlander, P., Halas, N.J., Acc. Chem. Res. 40, 53 (2007).CrossRefGoogle Scholar
Brandl, D.W., Mirin, N.A., Nordlander, P., J. Phys. Chem. B 110, 12302 (2006).CrossRefGoogle Scholar
Yu, N., Aieta, F., Genevet, P., Kats, M.A., Gaburro, Z., Capasso, F., Nano Lett. 12, 6328 (2012).CrossRefGoogle Scholar
Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., Wiesner, U., Nature 460, 1110 (2009).CrossRefGoogle Scholar
Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Norlander, P., Giessen, H., Chong, C.T., Nat. Mater. 9, 707 (2010).CrossRefGoogle Scholar
Hentschel, M., Schäferling, M., Weiss, T., Liu, N., Giessen, H., Nano Lett. 12, 2542 (2012).CrossRefGoogle Scholar
Zhao, Y., Belkin, M.A., Alù, A., Nat. Commun. 3, 870 (2012).CrossRefGoogle Scholar
Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S., J. Chem. Phys. 116, 6755 (2002).CrossRefGoogle Scholar
Chuntonov, L., Haran, G., Nano Lett. 11, 2440 (2011).CrossRefGoogle Scholar
Chuntonov, L., Haran, G., J. Phys. Chem. C 115, 19488 (2011).CrossRefGoogle Scholar
Dadosh, T., Sperling, J., Bryant, G.W., Breslow, R., Shegai, T., Dyshel, M., Haran, G., Bar-Joseph, I., ACS Nano 3, 1988 (2009).CrossRefGoogle Scholar
Bunker, P., Jensen, P., Molecular Symmetry and Spectroscopy (NRC Press, Ottawa, 1998).Google Scholar
Cotton, F.A., Chemical Applications of Group Theory (Wiley-Interscience, New York, 1990).Google Scholar
Kitahama, Y., Tanaka, Y., Itoh, T., Ozaki, Y., Phys. Chem. Chem. Phys. 13, 7439 (2011).CrossRefGoogle Scholar
Ward, D.R., Halas, N.J., Ciszek, J.W., Tour, J.M., Wu, Y., Norlander, P., Natelson, D., Nano Lett. 8, 919 (2008).CrossRefGoogle Scholar
Park, W.-H., Kim, Z.H., Nano Lett. 10, 4040 (2010).CrossRefGoogle Scholar
Wu, D.-Y., Liu, X.-M., Huang, Y.-F., Ren, B., Xu, X., Tian, Z.-Q., J. Phys. Chem. C 113, 18212 (2009).CrossRefGoogle Scholar
Weber, M.L., Willets, K.A., MRS Bull. 37, 745 (2012).CrossRefGoogle Scholar
Etchegoin, P.G., Galloway, C., Le Ru, E.C., Phys. Chem. Chem. Phys. 8, 2624 (2006).CrossRefGoogle Scholar
Kerker, M., Wang, D.-S., Chew, H., Appl. Opt. 19, 4159 (1980).CrossRefGoogle Scholar
Chuntonov, L., Haran, G., Nano Lett. 13, 1285 (2013).CrossRefGoogle Scholar
Barron, L.D., Molecular Light Scattering and Optical Activity (Cambridge University Press, New York, 2004).CrossRefGoogle Scholar
Barron, L.D., Zhu, F., Hecht, L., Tranter, G.E., Isaacs, N.W., J. Mol. Struct. 834, 7 (2007).CrossRefGoogle Scholar
Plum, E., Liu, X.-X., Fedotov, V.A., Chen, Y., Tsai, D.P., Zheludev, N.I., Phys. Rev. Lett. 102, 113902 (2009).CrossRefGoogle Scholar
Liu, N., Giessen, H., Angew. Chem. Int. Ed. 49, 9838 (2010).CrossRefGoogle Scholar
Valev, V.K., Baumberg, J.J., Sibilia, C., Verbiest, T., Adv. Mater. 25, 2517 (2013)CrossRefGoogle Scholar
Fedotov, V.A., Mladyonov, P.L., Prosvirnin, S.L., Rogacheva, A.V., Chen, Y., Zheludev, N.I., Phys. Rev. Lett. 97, 167401 (2006).CrossRefGoogle Scholar
Kuwata-Gonokami, M., Saito, N., Ino, Y., Kauranen, M., Jefimovs, K., Vallius, T., Turunen, J., Svirko, Y., Phys. Rev. Lett. 95, 227401 (2005).CrossRefGoogle Scholar